Skip to main content
Log in

A theory for polymorphic melting in binary solid solutions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We propose a phenomenological Landau theory to describe polymorphic melting in binary solid solutions. We use the mean atomic displacement as the primary order parameter to represent the loss of the long-range order and the elastic strain induced by alloy component as the secondary order parameter. Under polymorphic constraint where alloy concentration fluctuation is restricted, the model predicts the melting line, also called T0-curve that is depressed by two factors, the static strain field caused by the solute, and the anharmonicity induced by the thermal vibration. We also obtain other thermodynamic properties at and around the melting point. The results confirm well with available experimental results for dilute solutions. We extrapolate the melting line to high concentration region for which no experimental data are available. From the results, we discuss the relation between polymorphic melting and glass transition, as well as glass formability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE II.

Similar content being viewed by others

References

  1. A.R. Ubbelhode: The Molten State of Matter: Melting and Crystal Structure (Wiley, New York, 1979).

    Google Scholar 

  2. M. Born: Thermodynamics of crystals and melting. J. Chem. Phys. 7, 591 (1939).

    Article  CAS  Google Scholar 

  3. M. Born: On the stability of crystal lattices I. Proc. Cambridge Philos. Soc. 36, 160 (1940).

    Article  CAS  Google Scholar 

  4. M. Born: Dynamical Theory of Crystal Lattices (Oxford University Press, 1998).

    Google Scholar 

  5. F.A. Lindemann: The calculation of molecular vibration frequencies. Phys. Z. 11, 609 (1910)

    CAS  Google Scholar 

  6. J.J. Gilvarry: The Lindemann and Grüneisen laws. Phys. Rev. 102, 308 (1956).

    Article  CAS  Google Scholar 

  7. J.L. Tallon, W.H. Robinson, and S.I. Smedley: A melting criterion based on the dilatation dependence of shear modulii. Nature 266, 337 (1977)

    Article  CAS  Google Scholar 

  8. J.L. Tallon: Crystal instability and melting. Nature 299, 188 (1982)

    Article  CAS  Google Scholar 

  9. J.L. Tallon: A hierarchy of catastrophes as a succession of stability limits for the crystalline state. Nature 342, 658 (1989).

    Article  CAS  Google Scholar 

  10. T. Gorecki: Vacancies and changes of physical-properties of metals at melting-point. Z. Metallkde. 65, 426 (1974)

    CAS  Google Scholar 

  11. T. Gorecki: Comments on vacancies and melting. Scr. Metall. 11, 1051 (1977).

    Article  CAS  Google Scholar 

  12. J.E. Lennard and A.F. Devonshire: Critical and co-operative phenomena III. A theory of melting and the structure of liquids. Proc. R. Soc. London, Ser. A 169, 317 (1939)

    Article  Google Scholar 

  13. K. Nordlund and R.S. Averback: Role of self-interstitial atoms on the high temperature properties of metals. Phys. Rev. Lett. 80, 4201 (1998).

    Article  CAS  Google Scholar 

  14. T. Ninomiya: Theory of melting, dislocation model I. J. Phys. Soc. Jpn. 44, 263 (1978).

    Article  CAS  Google Scholar 

  15. A. Kanigel, J. Adler, and E. Polturak: Influence of point defects on the shear elastic coefficients and on the melting temperature of copper. Int. J. Mod. Phys. 12, 727 (2001)

    Article  CAS  Google Scholar 

  16. X.M. Bai and M. Li: Ring-diffusion mediated homogeneous melting in the superheating regime. Phys. Rev. B 77, 134109 (2008).

    Article  CAS  Google Scholar 

  17. D.R. Uhlmann: On the internal nucleation of melting. J. Non-Cryst. Solids 41, 347 (1980).

    Article  CAS  Google Scholar 

  18. R.W. Cahn: Melting and the surface. Nature 323, 668 (1986).

    Article  Google Scholar 

  19. M.A. Krivogla: Theory of X-Ray and Thermal Neutron Scattering by Real Crystals (Plenum Press, New York, 1969)

    Google Scholar 

  20. W.F. Kuhs: Generalized atomic displacements in the crystallographic structure analysis. Acta Cryst. A 48, 80 (1992).

    Article  Google Scholar 

  21. A. Voronel, S. Rabinovich, A. Kisliuk, V. Steinburg, and T. Sverbilov: Universality of physical properties of disordered alloys. Phys. Rev. Lett. 60, 2402 (1988)

    Article  CAS  Google Scholar 

  22. N.Q. Lam and P.R. Okamoto: A unified approach to solid-state amorphization and melting. Mater. Res. Soc. Bull. XIX 7, 41 (1994)

    Article  Google Scholar 

  23. N.Q. Lam, P.R. Okamoto, and M. Li: Defect-induced crystal-to-glass transition. J. Nucl. Mater. 251, 89 (1997).

    Article  CAS  Google Scholar 

  24. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, 1992).

    Book  Google Scholar 

  25. D.S. Kamenatskaya: in Growth of Crystals, Vol. 8, edited By N.N. Shefta (Consultants Bureau, New York, 1969), p. 271.

    Google Scholar 

  26. W.P. Allen, H.J. Fecht, and J.H. Perepezko: Melting behavior of Sn–Bi alloy droplets during continuous heating. Scr. Metall. 23, 643 (1989)

    Article  CAS  Google Scholar 

  27. K.R. Lee, J.A. West, P.M. Smith, M.J. Aziz, and J.A. Knapp: Measurements of T0 temperatures of supersaturated Si–As alloys. Mater. Res. Soc. Symp. Proc. 205, 31 (1992).

    Google Scholar 

  28. W.L. Johnson: Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81 (1986).

    Article  CAS  Google Scholar 

  29. M. Li, W.L. Johnson, and W.A. Goddard III: Configurationally frozen defects, random strains and Landau theory of crystal to glass transition. Mater. Forum 43, 246 (1995)

    Google Scholar 

  30. R.A. Cowley: Structural phase transitions. I. Landau theory. Adv. Phys. 29, 1 (1980)

    Article  CAS  Google Scholar 

  31. R. Lipowsky: Critical surface phenomena at first order bulk transitions. Phys. Rev. Lett. 49, 1575 (1982)

    Article  CAS  Google Scholar 

  32. H. Löwen and R. Lipowsky: Surface melting away from equilibrium. Phys. Rev. B 43, 3507 (1991).

    Article  Google Scholar 

  33. C.E. Krill III, J. Li, C.M. Garland, C. Ettl, K. Samwer, W.B. Yelon, and W.L. Johnson: Precursors of amorphization in supersaturated Nb–Pd solid solutions. J. Mater. Res. 10, 280 (1995).

    Article  CAS  Google Scholar 

  34. T.B. Massalski and H. Okamoto: Binary Alloy Phase Diagrams (ASM International, OH, 1992).

    Google Scholar 

  35. J.A. Kittz, R. Reitano, M.J. Aziz, D.P. Brunco, and M.O. Thompson: Time-resolved temperature measurements during rapid solidification of Si–As alloys induced by pulsed-laser melting. J. Appl. Phys. 73, 3725 (1993).

    Article  Google Scholar 

  36. P.S. Peercy, M.O. Thompson, and J.Y. Tsao: Effects of As impurities on the solidification velocity of Si during pulsed laser annealing. Appl. Phys. Lett. 47, 244 (1985)

    Article  CAS  Google Scholar 

  37. P. Baeri, R. Reitano, A.M. Malvezzi, and A. Borghesi: Pulsed laser melting of Si–As supersaturated solid solutions. J. Appl. Phys. 67, 1801 (1990).

    Article  CAS  Google Scholar 

  38. L.V. Gurvich and I.V. Veyts: Thermodynamic Properties of Individual Substances: Elements and Compounds, Vol 2, 4th ed. (Hemisphere Pub. Corp., CRC Press, 1990).

  39. S.P. Nikanorov, Yu.A. Burenkov, and A.V. Stepanov: Elastic properties of silicon. Sov. Phys. Solid State 13, 2516 (1971).

    Google Scholar 

  40. P.J. Mohr, B.N. Taylor, and D.B. Newell: CODATA recommended values of the fundamental physical constants. Rev. Mod. Phys. 80, 633 (2008).

    Article  CAS  Google Scholar 

  41. R. Hull: Properties of Crystalline Silicon (INSPEC, London, 1999).

    Google Scholar 

  42. R.W. Cahn and P. Haasen: Physical Metallurgy, 4th ed. (North-Holland, Amsterdam, 1996), pp. 686–687.

    Google Scholar 

  43. J.L. Murray: Calculations of stable and metastable equilibrium diagrams of the Ag–Cu and Cd–Zn systems. Metall. Trans. A 15, 261 (1984).

    Article  Google Scholar 

  44. M. Li and W.L. Johnson: Instability of metastable solid solutions and crystal to glass transition. Phys. Rev. Lett. 70, 1120 (1993).

    Article  CAS  Google Scholar 

  45. W.L. Johnson, M. Li, and C.E. Krill III: The crystal to glass transition in relation to melting. J. Non-Cryst. Solids 156-158, 481 (1993).

    Article  Google Scholar 

  46. M. Li, W.L. Johnson, and W.A. Goddard III: Evidence of hexatic phase formation in 2-dimensional Lennard–Jones binary arrays. Phys. Rev. B 54, 12067 (1996).

    Article  CAS  Google Scholar 

  47. M. Li: Defect-induced topological order-to-disorder transition in two-dimensional binary substitutional alloys: A molecular dynamics study. Phys. Rev. B 62, 13979 (2000).

    Article  CAS  Google Scholar 

  48. P. Jalali and M. Li: Atomic size effect on critical cooling rate and glass formability. Phys. Rev. B 71, 013450 (2005).

    Article  CAS  Google Scholar 

  49. H.J. Lee, T. Cagain, W.L. Johnson, and W.A. Goddard: Criteria for formation of metallic glasses: The role of atomic size ratio. J. Chem. Phys. 119, 9858 (2003).

    Article  CAS  Google Scholar 

  50. T. Egami and Y. Waseda: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).

    Article  CAS  Google Scholar 

  51. T. Egami: Universal criterion for metallic glass formation. Mat. Sci. Eng. A 226, 261 (1993).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support to this work provided partially by the National Science Foundation under Grant No. NSF-0907320. M.L. is also grateful for the partial support by the National Science Foundation under Grant No. PHY05-51164 at Kavli Institute for Theoretical Physics in University of California, Santa Barbara, where a part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Li, M. A theory for polymorphic melting in binary solid solutions. Journal of Materials Research 26, 997–1005 (2011). https://doi.org/10.1557/jmr.2011.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.55

Navigation