Skip to main content
Log in

Predicting the Composition Ranges of Amorphization for Multicomponent Melts in the Framework of the Calphad Method

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Theoretical bases for the calculation of metastable phase transformations with the participation of supercooled multicomponent melts in the framework of the CALPHAD method are considered. A database with parameters for models of thermodynamic properties of phases in the Cu–Ni–Ti–Zr–Hf system for such calculations is presented. The excess term of the Gibbs energy of liquid alloys is described using the associated solution model, and bcc and fcc solid solutions with a mathematical model with Redlich–Kister polynomials. The diagrams of metastable phase transformations with the participation of supercooled liquid alloys and boundary solid solutions are calculated. The composition ranges for obtaining rapidly quenched and bulk amorphous ternary, quaternary, and quinary alloys of the Cu–Ni–Ti–Zr–Hf system are theoretically assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. A. Inoue, F. L. Kong, S. L. Zhu, et al., “Production methods and properties of engineering glassy alloys and composites,” Intermetallics, 58, 20–30 (2015).

    Article  Google Scholar 

  2. A. Inoue, F. L. Kong, S. L. Zhu, et al., “Peculiarities and usefulness of multicomponent bulk metallic alloys,” J. Alloys Compd., 707, 12–19 (2017).

    Article  Google Scholar 

  3. R. B. Schwarz, P. Nash, and D. Turnbull, “The use of thermodynamic models in the prediction of the glass-forming range of binary alloys,” J. Mater. Res., 2, No. 4, 456–460 (1987).

    Article  Google Scholar 

  4. R. Bormann, F. Gärtner, and K. Zöltzer, “Application of the CALPHAD method for the prediction of amorphous phase formation,” J. Less-Common Met., 145, 19–29 (1988).

    Article  Google Scholar 

  5. N. Saunders and A. P. Miodownik, “Free energy criteria for glass forming alloys,” Ber. Bunsen Ges. Phys. Chem., 87, No. 9, 830–834 (1983).

    Article  Google Scholar 

  6. P. G. Agraval, L. A. Dreval, and M. A. Turchanin, “Interaction of components in Cu–Fe glass-forming melts with titanium, zirconium, and hafnium. III. Modeling of metastable phase transformations with participation of liquid phase,” Powder Metall. Met. Ceram., 56, No. 7–8, 463–472 (2017).

    Article  Google Scholar 

  7. A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD, 15, No. 4, 317–425 (1991).

    Article  Google Scholar 

  8. P. G. Agraval, L. A. Dreval, and M. A. Turchanin, “Interaction of components in Cu–Fe glass-forming melts with titanium, zirconium, and hafnium. II. Modeling of metastable phase transformations with participation of liquid phase,” Powder Metall. Met. Ceram., 56, No. 5–6, 323–332 (2017).

    Article  Google Scholar 

  9. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. VI. Copper–nickel system,” Powder Metall. Met. Ceram., 46, No. 9–10, 467–477 (2007).

    Article  Google Scholar 

  10. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamic assessment of the Cu–Ti–Zr system. I. Cu–Ti system,” Powder Metall. Met. Ceram., 47, No. 5–6, 344–360 (2008).

    Article  Google Scholar 

  11. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamic assessment of the Cu–Ti–Zr system. II. Cu–Zr and Ti–Zr systems,” Powder Metall. Met. Ceram., 47, No. 7–8, 428–511 (2008).

    Article  Google Scholar 

  12. M. A. Turchanin and P. G. Agraval, “Thermodynamic assessment of the copper–hafnium system,” Powder Metall. Met. Ceram., 47, No. 3–4, 223–233 (2008).

    Article  Google Scholar 

  13. P. G. Agraval, A. R. Abdulov, L. A. Dreval, et al., “Thermodynamic modeling of stable and metastable transformations in the Ni–Ti system,” Vestnik DGMA, 25, No. 4, 6–13 (2011).

    Google Scholar 

  14. M. A. Turchanin and P. G. Agraval, “Calculation of metastable phase equilibria with participation of supercooled liquid and assessment of glass formation composition range in the (Co, Ni, Cu)–IVA-metal melts,” in: Physical Chemistry of Condensed Systems and Interfaces (Collected Scientific Papers) [in Ukrainian], Kyiv Universytet, Kyiv (2003), pp. 134–141.

  15. H. Bittermann and P. Rogl, “Critical assessment and thermodynamic calculation of the ternary system boron–hafnium–titanium (B–Hf–Ti),” J. Phase Equilib., 18, No. 1, 24–47 (1997).

    Article  Google Scholar 

  16. H. Bittermann and P. Rogl, “Critical assessment and thermodynamic calculation of the ternary system C–Hf–Zr (carbon–zirconium–hafnium),” J. Phase Equilib., 23, No. 3, 218–235 (2002).

    Article  Google Scholar 

  17. M. A. Turchanin, T. Ya. Velikanova, P. G. Agraval, et al., “Thermodynamic assessment of the Cu–Ti–Zr system. III. Cu–Ti–Zr system,” Powder Metall. Met. Ceram., 47, No. 9–10, 586–606 (2008).

    Article  Google Scholar 

  18. A. A. Vodopyanova, P. G. Agraval, M. A. Turchanin, et al., “Thermodynamic properties of liquid alloys in the Cu–Ni–(Ti, Zr, Hf) systems,” in: A. M. Fesenko and M. A. Turchanin (eds.), Proc. 6th Int. Sci. Conf. Advanced Technologies, Materials, and Equipment in Foundry (September 25–28, 2017) [in Ukrainian], DDMA, Kramatorsk (2017), pp. 39–40.

    Google Scholar 

  19. A. A. Vodopyanova, L. A. Dreval, P. G. Agraval, et al., “Investigation of the components interaction in the liquid glass-forming Ni–Ti–Hf alloys,” in: Proc. 18th Int. Sci. Conf. New Technologies and Achievements in Metallurgy, Material Engineering, and Production Engineering (May 31–June 2, 2017, Częstochowa, Poland), Series Monografie No. 68, Vol. 1, pp. 88–91.

  20. M. Sakata, N. Cowlam, and H. A. Davies, “Chemical short-range order in liquid and amorphous 66:34 copper–titanium alloys,” J. Phys. F: Met. Phys., 11, No. 7, L157–L162 (1981).

    Article  Google Scholar 

  21. C.-H. Hwang, Y.-J. Ryeom, and K. Cho, “Electrical resistivity and crystallization of amorphous Cu–Ti alloys,” J. Less-Common Met., 86, 187–194 (1982).

    Article  Google Scholar 

  22. K. H. J. Buschow, “Effect of short-range ordering on the thermal stability of amorphous titanium-copper alloys,” Scr. Metall., 17, No. 9, 1135–1139 (1983).

    Article  Google Scholar 

  23. J. Reeve, G. P. Gregan, and H. A. Davies, “Glass forming ability studies in the copper–titanium system,” in: Proc. 5th Int. Conf. Rapidly Quenched Metals, Meeting Date 1984, North-Holland, Amsterdam (1985), Vol. 1, pp. 203–206.

  24. C. G. Woychik, D. H. Lowndes, and T. B. Massalski, “Solidification structures in melt-spun and pulsed laser-quenched copper–titanium alloys,” Acta Metall., 33, No. 10, 1861–1871 (1985).

    Article  Google Scholar 

  25. C. Colinet, A. Pasturel, and K. Buschow, “Enthalpies of formation of Ti–Cu intermetallic and amorphous phases,” J. Alloys Compd., 247, No. 1, 15 (1997).

    Article  Google Scholar 

  26. R. Ristić, E. Babić, D. Pajić, et al., “Properties and atomic structure of amorphous early transition metals,” J. Alloys Compd., 504, S194–S197 (2010).

    Article  Google Scholar 

  27. K. H. J. Buschow, “Thermal stability of amorphous Zr–Cu alloys,” J. Appl. Phys., 52, 3319–3323 (1981).

    Article  Google Scholar 

  28. I. Ansara, A. Pasturel, and K. H. J. Buschow, “Enthalpy effects in amorphous alloys and intermetallic compounds in the system Zr–Cu,” Phys. Status Solidi A, 69, No. 2, 447–453 (1982).

    Article  Google Scholar 

  29. E. Kneller, Y. Khan, and U. Gorres, “The alloy system copper–zirconium. Part II. Crystallization of the glasses from Cu70Zr30 to Cu26Zr74,” Z. Metallkd., 77, 152–163 (1986).

    Google Scholar 

  30. A. Inoue and W. Zhang, “Formation, thermal stability, and mechanical properties of Cu–Zr and Cu–Hf binary glassy alloy rods,” Mater. Trans., 45, No. 2, 584–587 (2004).

    Article  Google Scholar 

  31. D. Xu, B. Lohwongwatana, G. Duan, et al., “Bulk metallic glass formation in binary Cu-rich alloy series– Cu100−xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass,” Acta Mater., 52, No. 9, 2621–2624 (2004).

    Article  Google Scholar 

  32. S.-W. Lee, M.-Y. Huh, E. Fleury, et al., “Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys,” Acta Mater., 54, No. 2, 349–355 (2006).

    Article  Google Scholar 

  33. L. Ge, X. Hui, G. Chen, et al., “Prediction of the glass-forming ability of Cu–Zr binary alloys,” Acta Phys. Chim. Sin., 23, No. 6, 895–899 (2007).

    Article  Google Scholar 

  34. B. F. Lu, J. F. Li, L.T. Kong, et al., “Correlation between mechanical behavior and glass forming ability of Zr–Cu metallic glasses,” Intermetallics, 19, No. 7, 1032–1035 (2011).

    Article  Google Scholar 

  35. T. Shindo, Y. Waseda, and A. Inoue, “Prediction of critical compositions for bulk glass formation in La-based, Cu-based, and Zr-based ternary alloys,” Mater. Trans., JIM, 44, No. 3, 351–357 (2003).

    Article  Google Scholar 

  36. A. Inoue, W. Zhang, T. Zhang, et al., “High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems,” Acta Mater., 49, 2645–2652 (2001).

    Article  Google Scholar 

  37. H. Men, S. J. Pang, and T. Zhang, “Glass-forming ability and mechanical properties of Cu50Zr50–xTi x alloys,” Mater. Sci. Eng. A, 408, No. 1, 326–329 (2005).

    Article  Google Scholar 

  38. Q. Wang, J. Qiang, Y. Wang, et al., “Bulk metallic glass formation in Cu–Zr–Ti ternary system,” J. Non-Cryst. Solids, 353, No. 32, 3425–3428 (2007).

    Article  Google Scholar 

  39. R. Bormann, F. Gärtner, and K. Zöltzer, “Application of the CALPHAD method for the prediction of amorphous phase formation,” J. Less-Common Met., 145, 19–29 (1988).

    Article  Google Scholar 

  40. T. Zhang, A. Inoue, and T. Masumoto, “Amorphous (Ti, Zr, Hf)–Ni–Cu ternary alloys with a wide supercooled liquid region,” Mater. Sci. Eng. A, 181–182, 1423–1426 (1994).

    Article  Google Scholar 

  41. A. Takeuchi and A. Inoue, “Calculations of amorphous-forming composition range for ternary alloy systems and analyses of stabilization of amorphous phase and amorphous-forming ability,” Mater. Trans., 42, No. 7, 1435–1444 (2001).

    Article  Google Scholar 

  42. M. Fukuhara, M. Takahashi, Y. Kawazoe, et al., “Role of valence electrons for formation of glassy alloys,” J. Alloys Compd., 483, No. 1–2, 623–626 (2009).

    Article  Google Scholar 

  43. K. H. J. Buschow and N. M. Beekmans, “Thermal stability of amorphous alloys,” Solid State Commun., 35, No. 3, 233–236 (1980).

    Article  Google Scholar 

  44. G. Duan, D. Xu, and W. L. Johnson, “High copper content bulk glass formation in bimetallic Cu–Hf system,” Metall. Mater. Trans. A, 36, No. 2, 455–458 (2005).

    Article  Google Scholar 

  45. J. Basu and S. Ranganathan, “Glass forming ability and stability: Ternary Cu bearing Ti, Zr, Hf alloys,” Intermetallics, 17, No. 3, 128–135 (2009).

    Article  Google Scholar 

  46. Z. Altounian, E. Batalla, and J. Strom-Olsen, “Crystallization characteristics of late transition metal-Zr glasses around the composition M90Zr10,” J. Appl. Phys., 59, No. 7, 2364–2367 (1986).

    Article  Google Scholar 

  47. K. Russew, F. Sommer, P. Duhaj, et al., “Viscous flow behavior of Ni x Zr100–x metallic glasses from Ni30Zr70 to Ni64Zr36,” J. Mater. Sci., 27, No. 13, 3565–3569 (1992).

    Article  Google Scholar 

  48. A. Turchanin, M. Turchanin, and I. Tomilin, “Enthalpy of formation of amorphous and liquid nickel-zirconium alloys,” Mater. Sci. Forum, Trans. Tech. Publ., 269, 571–576 (1998).

    Article  Google Scholar 

  49. X. J. Liu, X. D. Hui, G. L. Chen, et al., “Local atomic structures in Zr–Ni metallic glasses,” Phys. Lett. A, 373, No. 29, 2488–2493 (2009).

    Article  Google Scholar 

  50. V. V. Molokanov, V. N. Chebotnikov, and Yu. K. Kovneristy, “Structure and properties of amorphous and crystalline alloys in the Ti2Ni–Zr2Ni section in the Ti–Ni–Zr system,” Neorg. Mater., 25, No. 1, 61–65 (1989).

    Google Scholar 

  51. X. J. Liu, X. D. Hui, and G. L. Cheng, “Thermodynamic calculation and experimental investigation of glass formation in Zr–Ni–Ti alloy system,” Intermetallics, 16, 262–266 (2008).

    Article  Google Scholar 

  52. P. J. McCluskey and J. J. Vlassak, “Glass transition and crystallization of amorphous Ni–Ti–Zr thin films by combinatorial nano-calorimetry,” Scr. Mater., 64, No. 3, 264–267 (2011).

    Article  Google Scholar 

  53. K. H. J. Buschow, “Short-range order and thermal stability in amorphous alloys,” J. Phys. F: Met. Phys., 14, No. 3, 593 (1984).

    Article  Google Scholar 

  54. J. Basu and S. Ranganathan, “Glass-forming ability and stability of ternary Ni-early transition metal (Ti/Zr/Hf) alloys,” Acta Mater., 56, No. 8, 1899–1907 (2008).

    Article  Google Scholar 

  55. I. Figueroa, H. Davies, and I. Todd, “Formation of Cu–Hf–Ti bulk metallic glasses,” J. Alloys Compd., 434, 164–166 (2007).

    Article  Google Scholar 

  56. H. Choi-Yim and R. Conner, “Amorphous alloys in the Cu–Hf–Ti system,” J. Alloys Compd., 459, No. 1, 160–162 (2008).

    Article  Google Scholar 

  57. J. Freitag, H. Guo, and Z. Altounian, “Transport properties of isostructural Ni–Zr–Hf metallic glasses,” Mater. Sci. Eng. A, 226, 1042–1044 (1997).

    Article  Google Scholar 

  58. S. Hara, H. X. Huang, M. Ishitsuka, et al., “Hydrogen solution properties in a series of amorphous Zr–Hf–Ni alloys at elevated temperatures,” J. Alloys Compd., 458, No. 1, 307–312 (2008).

    Article  Google Scholar 

  59. X. F. Wu, Z. Y. Suo, Y. Si, et al., “Bulk metallic glass formation in a ternary Ti–Cu–Ni alloy system,” J. Alloys Compd., 452, No. 2, 268–272 (2008).

    Article  Google Scholar 

  60. H. Yang, J. Wang, and Y. Li, “Glass formation in the ternary Zr–Zr2Cu–Zr2Ni system,” J. Non-Cryst. Solids, 352, No. 8, 832–836 (2006).

    Article  Google Scholar 

  61. K. Fujita, A. Okamoto, N. Nishiyama, et al., “Effects of loading rates, notch root radius and specimen thickness on fracture toughness in bulk metallic glasses,” J. Alloys Compd., 434, 22–27 (2007).

    Article  Google Scholar 

  62. L. Ma, L. Wang, T. Zhang, et al., “Bulk glass formation of Ti–Zr–Hf–Cu–M (M = Fe, Co, Ni) alloys,” Mater. Trans., 43, No. 2, 277–280 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Agraval.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 57, Nos. 1–2 (519), pp. 75–98, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turchanin, M.A., Agraval, P.G., Velikanova, T.Y. et al. Predicting the Composition Ranges of Amorphization for Multicomponent Melts in the Framework of the Calphad Method. Powder Metall Met Ceram 57, 57–70 (2018). https://doi.org/10.1007/s11106-018-9955-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-018-9955-3

Keywords

Navigation