Skip to main content
Log in

Broadband nanoindentation of glassy polymers: Part I. Viscoelasticity

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Protocols are developed to assess viscoelastic moduli from unloading slopes in Berkovich nanoindentation across four orders of magnitude in time scale (0.01–100 s unloading time). Measured viscoelastic moduli of glassy polymers poly(methyl methacrylate), polystyrene, and polycarbonate follow the same trends with frequency (1/unloading time) as viscoelastic moduli generated from dynamic mechanical analysis and broadband viscoelastic spectroscopy but are 18–50% higher. Included in the developed protocols is an experimental method based on measured indent area to remove from consideration indents for which viscoplastic deformation takes place during unloading. Ancillary measurements of indent area and depth reveal no detectable (~1%) change in area between 200 s and 4.9 days following removal of indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18

Similar content being viewed by others

References

  1. R. Lakes: Viscoelastic Materials. (Cambridge University Press, Cambridge, UK, 2009), pp. 1–110.

    Book  Google Scholar 

  2. Y.-T. Cheng and C.-M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mat. Sci. Eng. R 44,91 (2004).

    Article  Google Scholar 

  3. M. Vandamme and F.-J. Ulm: Viscoelastic solutions for conical indentation. Int. J. Solids Struct. 43, 3142 (2006).

    Article  Google Scholar 

  4. A.E. Giannakopoulos: Elastic and viscoelastic indentation of flat surfaces by pyramid indentors. J. Mech. Phys. Solids. 54, 1305 (2006).

    Article  CAS  Google Scholar 

  5. E.H. Lee and J.R.M. Radok: Contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).

    Article  Google Scholar 

  6. S.C. Hunter: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids. 8, 219 (1960).

    Article  Google Scholar 

  7. E.H. Lee: Stress analysis for linear viscoelastic materials. Rheol. Acta. 1, 426 (1961).

    Article  Google Scholar 

  8. G.A.C. Graham: The contact problem in the linear theory of viscoelasticity. Int. J. Eng. Sci. 3, 27 (1965).

    Article  Google Scholar 

  9. T.C.T. Ting: Contact stresses between rigid indenter and viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).

    Article  Google Scholar 

  10. G.A.C. Graham: The contact problem in the linear theory of viscoelasticity when the time dependent contact area has any number of maxima and minima. Int. J. Eng. Sci. 5, 495 (1967).

    Article  Google Scholar 

  11. E.G. Herbert, W.C. Oliver, A. Lumsdaine, and G.M. Pharr: Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation. J. Mater. Res. 24, 626 (2009).

    Article  CAS  Google Scholar 

  12. J.L. Loubet, W.C. Oliver, and B.N. Lucas: Measurement of the loss tangent of low-density polyethylene with a nanoindentation technique. J. Mater. Res. 15, 1195 (2000).

    Article  CAS  Google Scholar 

  13. S.A.S. Asif, K.J. Wahl, R.J. Colton, and O.L. Warren: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 5838 (2001).

    Article  CAS  Google Scholar 

  14. C.C. White, M.R. Vanlandingham, P.L. Drzal, N.K. Chang, and S.H. Chang: Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing. J. Polym. Sci. Part B: Polym. Phys. 43, 1812 (2005).

    Article  CAS  Google Scholar 

  15. A. Jäger, R. Lackner, and J. Eberhardsteiner: Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42, 293 (2007).

    Article  Google Scholar 

  16. M.L. Oyen: Relating viscoelastic nanoindentation creep and load relaxation experiments. Int. J. Mater. Res. 99, 823 (2008).

    Article  CAS  Google Scholar 

  17. M.L. Oyen and R.F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003).

    Article  CAS  Google Scholar 

  18. B. Beake: Modelling indentation creep of polymers: A phenomenological approach. J. Phys. D: Appl. Phys. 39, 4478 (2006).

    Article  CAS  Google Scholar 

  19. H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).

    Article  Google Scholar 

  20. C.A. Tweedie and Van K.J. Vliet: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21, 1576 (2006).

    Article  CAS  Google Scholar 

  21. M.R. Vanlandingham, N.K. Chang, P.L. Drzal, C.C. White, and S.H. Chang: Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing. J. Polym. Sci. Part B: Polym. Phys. 43, 1794 (2005).

    Article  CAS  Google Scholar 

  22. G.M. Odegard, T.S. Gates, and H.M. Herring: Characterization of viscoelastic properties of polymeric materials through nanoindentation, in Proceedings of the Society for Experimental Mechanics, Inc 52, 130 (2005).

    Article  Google Scholar 

  23. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).

    Article  Google Scholar 

  24. A. Bolshakov and G.M. Pharr: Inaccuracies in Sneddon’s solution for elastic indentation by a rigid cone and their implications for nanoindentation data analysis, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J.-E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 189.

    Google Scholar 

  25. T. Chudoba and N.M. Jennett: Higher accuracy analysis of instrumented indentation data obtained with pointed indenters. J. Phys. D: Appl. Phys. 41, 215407 (2008).

    Article  CAS  Google Scholar 

  26. J.H. Strader, S. Shim, H. Bei, W.C. Oliver, and G.M. Pharr: An experimental evaluation of the constant ß relating the contact stiffness to the contact area in nanoindentation. Philos. Mag. 86, 5285 (2006).

    Article  CAS  Google Scholar 

  27. J.E. Jakes, C.R. Frihart, J.F. Beecher, R.J. Moon, and D.S. Stone: Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 23, 1113 (2008).

    Article  CAS  Google Scholar 

  28. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  29. Y.-T. Cheng and C.-M. Cheng: Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J. Mater. Res. 20, 1046 (2005).

    Article  CAS  Google Scholar 

  30. Y.-T. Cheng and C.-M. Cheng: Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Mater. Sci. Eng., A 409, 93 (2005).

    Article  CAS  Google Scholar 

  31. Y.-T. Cheng, C.-M. Cheng, and N. Wangyang: Methods of obtaining instantaneous modulus of viscoelastic solids using displacement-controlled instrumented indentation with axisymmetric indenters of arbitrary smooth profiles. Mater. Sci. Eng., A 423, 2 (2006).

    Article  CAS  Google Scholar 

  32. Y.-T. Cheng, N. Wangyang, and C.-M. Cheng: Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements. J. Mater. Res. 20, 3061 (2005).

    Article  CAS  Google Scholar 

  33. N. Fujisawa and M.V. Swain: Nanoindentation-derived elastic modulus of an amorphous polymer and its sensitivity to load-hold period and unloading strain rate. J. Mater. Res. 23, 637 (2008).

    Article  CAS  Google Scholar 

  34. A.H.W. Ngan, H.T. Wang, B. Tang, and K.Y. Sze: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int. J. Solids Struct. 42, 1831 (2005).

    Article  Google Scholar 

  35. B. Tang and A.H.W. Ngan: Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18, 1141 (2003).

    Article  CAS  Google Scholar 

  36. N. Fujisawa and M.V. Swain: Effect of unloading strain rate on the elastic modulus of a viscoelastic solid determined by nanoindentation. J. Mater. Res. 21, 708 (2006).

    Article  CAS  Google Scholar 

  37. N. Fujisawa and M.V. Swain: On the indentation contact area of a creeping solid during constant-strain-rate loading by a sharp indenter. J. Mater. Res. 22, 893 (2007).

    Article  CAS  Google Scholar 

  38. J. Tong, J. Sun, D. Chen, and S. Zhang: Factors impacting nanoindentation testing results of the cuticle of dung beetle Copris ochus Motschulsky: J. Bionics Eng. 1, 221 (2004).

    Google Scholar 

  39. L. Chien-Kuo, L. Sanboh, S. Li-Piin, and T. Nguyen: Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 100, 33503 (2006).

    Article  CAS  Google Scholar 

  40. D.M. Ebenstein and L.A. Pruitt: Nanoindentation of biological materials. Nano Today 1, 26 (2006).

    Article  Google Scholar 

  41. G. Feng and A.H.W. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).

    Article  CAS  Google Scholar 

  42. A.H.W. Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).

    Article  CAS  Google Scholar 

  43. B.J. Briscoe, L. Fiori, and E. Pelillo: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31, 2395 (1998).

    Article  CAS  Google Scholar 

  44. B. Tang, A. Ngan, and W. Lu: An improved method for the measurement of mechanical properties of bone by nanoindentation. J. Mater. Sci. Mater. Med. 18, 1875 (2007).

    Article  CAS  Google Scholar 

  45. J.E. Jakes, R.S. Lakes, and D.S. Stone: Broadband nanoindentation of glassy polymers: Part II. Viscoplasticity. J. Mater. Res. Soc. 27(2), 475 (2011).

    Article  CAS  Google Scholar 

  46. D.S. Stone, K.B. Yoder, and W.D. Sproul: Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol. A 9, 2543 (1991).

    Article  CAS  Google Scholar 

  47. A.F. Yee and M.T. Takemori: Dynamic bulk and shear relaxation in glassy polymers. I. Experimental techniques and results on PMMA. J. Polym. Sci., Polym. Phys. Ed. 20, 205 (1982).

    Article  CAS  Google Scholar 

  48. H.A. Afifi: Ultrasonic pulse echo studies of the physical properties of PMMA, PS, and PVC. Polym. Plast. Technolo. and Eng. 42, 193 (2003).

    Article  CAS  Google Scholar 

  49. M. Fukuhara and A. Sampei: Low-temperature elastic moduli and dilational and shear internal friction of polycarbonate. Jpn. J. Appl. Phys. 35, 3218 (1996).

    Article  CAS  Google Scholar 

  50. J. Capodagli and R. Lakes: Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: A test of time–temperature superposition. Rheologica Acta. 47, 777 (2008).

    Article  CAS  Google Scholar 

  51. C.A. Tweedie and Van K.J. Vliet: On the indentation recovery and fleeting hardness of polymers. J. Mater. Res. 21, 3029 (2006).

    Article  CAS  Google Scholar 

  52. I.M. Low, G. Paglia, and C. Shi: Indentation responses of viscoelastic materials. J. Appl. Polym. Sci. 70, 2349 (1998).

    Article  CAS  Google Scholar 

  53. M.R. VanLandingham, J.S. Villarrubia, W.F. Guthrie, and G.F. Meyers: Nanoindentation of polymers: An overview. Macromol. Symp. 167, 15 (2001).

    Article  CAS  Google Scholar 

  54. B.J. Briscoe and K.S. Sebastian: The elastoplastic response of poly(methyl methacrylate) to indentation. Proc. R. Soc. London, Ser. A 452, 439 (1996).

    Article  CAS  Google Scholar 

  55. L. Anand and N.M. Ames: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123 (2006).

    Article  CAS  Google Scholar 

  56. R.G. Veprek, D.M. Parks, A.S. Argon, and S. Veprek: Erratum to “Non-linear finite element constitutive modeling of mechanical properties of hard and superhard materials studied by indentation” [Mater. Sci. Eng. A 422 (2006) 205–217] (DOI:10.1016/j.msea.2006.02.020). Mater. Sci. Eng., A 448, 366 (2007).

    Article  CAS  Google Scholar 

  57. A. Strojny, X. Xia, A. Tsou, and W.W. Gerberich: Techniques and considerations for nanoindentation measurements of polymer thin film constitutive properties. J. Adhes. Sci. Technol. 12, 1299 (1998).

    Article  CAS  Google Scholar 

  58. W.M. Mook and W.W. Gerberich: Effect of hydrostatic pressure on indentation modulus, in Fundamentals of Nanoindentation and Nanotribology IV, edited by Le E. Bourhis, D.J. Morris, M.L. Oyen, R. Schwaiger, and T. Staedler (Mater. Res. Soc. Symp. Proc. 1049, Warrendale, PA, 2008) 1049-AA02-09, p. 21.

    Google Scholar 

  59. B. Wolf and M. Goken: On the pressure dependence of the indentation modulus. Z. Metallkd. 96, 1247 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Oden Warren, Syed Asif, Jason Oh, and Yuxin Feng at Hysitron Inc. for helping us to quantify the effects of the electronic filters in the nanoindentation measurements. Research was supported by CRADA 10-RD-111111129-027 between Hysitron Inc. and Forest Products Laboratory (J.E. Jakes) and by the National Science Foundation, Award CMMI-0824719 (D.S. Stone).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakes E. Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, J.E., Lakes, R.S. & Stone, D.S. Broadband nanoindentation of glassy polymers: Part I. Viscoelasticity. Journal of Materials Research 27, 463–474 (2012). https://doi.org/10.1557/jmr.2011.363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.363

Navigation