Skip to main content
Log in

Preparation and characterization of electrospun silk fibroin/sericin blend fibers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the silk fibroin/sericin (SF/SS) blend aqueous solutions with different SF/SS mass ratios (100/0, 90/10, 85/15, 75/25, and 65/35) were prepared and electrospun to get regenerated fibers. It was found that the addition of SS in the SF solution could increase the apparent viscosity of the solution and improve its electrospinnability so that the fine uniform electrospun SF/SS fibers could be obtained. The quantitative analysis result of Raman spectroscopy showed that the presence of SS facilitated the conformational transition of SF from random coil/α-helix structure to β-sheet structure. Combined with the differential scanning calorimetry result, it was further hypothesized that SS could affect the structural change of SF by dehydrating SF and inducing the formation of hydrogen bonds between SF molecules. Consequently, SS also played an important and positive role in the thermal and mechanical properties of the resultant SF/SS fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE II.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. F. Vollrath and D.P. Knight: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).

    Article  CAS  Google Scholar 

  2. Z.Z. Shao and F. Vollrath: Surprising strength of silkworm silk. Nature 418, 741 (2002).

    Article  CAS  Google Scholar 

  3. D.A. Tirrell: Putting a new spin on spider silk. Science 271, 39 (1996).

    Article  CAS  Google Scholar 

  4. X.G. Li, L.Y. Wu, M.R. Huang, H.L. Shao, and X.C. Hu: Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers 89, 497 (2008).

    Article  CAS  Google Scholar 

  5. G.Q. Zhou, X. Chen, and Z.Z. Shao: The artificial spinning based on silk proteins. Prog. Chem. 18, 933 (2006).

    CAS  Google Scholar 

  6. M.M.R. Khan, H. Morikawa, Y. Gotoh, M. Miura, Z. Ming, Y. Sato, and M. Iwasa: Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds. Int. J. Biol. Macromol. 42, 264 (2008).

    Article  CAS  Google Scholar 

  7. J. Perez-Rigueiro, L. Biancotto, P. Corsini, E. Marsano, M. Elices, G.R. Plaza, and G.V. Guinea: Supramolecular organization of regenerated silkworm silk fibers. Int. J. Biol. Macromol. 44, 195 (2009).

    Article  CAS  Google Scholar 

  8. K.H. Lee, D.H. Baek, C.S. Ki, and Y.H. Park: Preparation and characterization of wet spun silk fibroin/poly(vinyl alcohol) blend filaments. Int. J. Biol. Macromol. 41, 168 (2007).

    Article  CAS  Google Scholar 

  9. S.W. Ha, A.E. Tonelli, and S.M. Hudson: Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 6, 1722 (2005).

    Article  CAS  Google Scholar 

  10. E. Marsano, P. Corsini, C. Arosio, A. Boschi, M. Mormino, and G. Freddi: Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres. Int. J. Biol. Macromol. 37, 179 (2005).

    Article  CAS  Google Scholar 

  11. J.M. Yao, H. Masuda, C.H. Zhao, and T. Asakura: Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate. Macromolecules 35, 6 (2002).

    Article  CAS  Google Scholar 

  12. J. Ayutsede, M. Gandhi, S. Sukigara, M. Micklus, H.E. Chen, and F. Ko: Regeneration of Bombyx mori silk by electrospinning. Part 3: Characterization of electrospun nonwoven mat. Polymer 46, 1625 (2005).

    Article  CAS  Google Scholar 

  13. W.W. Bao, Y.Z. Zhang, G.B. Yin, and J.L. Wu: The structure and property of the electrospinning silk fibroin/gelatin blend nanofibers. E-Polymers Art. 98 (2008).

    Google Scholar 

  14. C. Chen, C.B. Cao, X.L. Ma, Y. Tang, and H.S. Zhu: Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method. Polymer 47, 6322 (2006).

    Article  CAS  Google Scholar 

  15. K. Ohgo, C.H. Zhao, M. Kobayashi, and T. Asakura: Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer 44, 841 (2003).

    Article  CAS  Google Scholar 

  16. A. Martel, M. Burghammer, R. Davies, E. DiCola, P. Panine, J.B. Salmon, and C. Riekel: A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small- and wide-angle X-ray scattering. Biomicrofluidics 2, 024104 (2008).

    Article  Google Scholar 

  17. K.H. Lee: Silk sericin retards the crystallization of silk fibroin. Macromol. Rapid Commun. 25, 1792 (2004).

    Article  CAS  Google Scholar 

  18. C.S. Ki, J.W. Kim, H.J. Oh, K.H. Lee, and Y.H. Park: The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament. Int. J. Biol. Macromol. 41, 346 (2007).

    Article  CAS  Google Scholar 

  19. Y. Kawahara, A. Nakayama, N. Matsumura, T. Yoshioka, and M. Tsuji: Structure for electro-spun silk fibroin nanofibers. J. Appl. Polym. Sci. 107, 3681 (2008).

    Article  CAS  Google Scholar 

  20. J.X. Zhu, Y.P. Zhang, H.L. Shao, and X.C. Hu: Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: The effects of pH and concentration. Polymer 49, 2880 (2008).

    Article  CAS  Google Scholar 

  21. F. Zhang, B.Q. Zuo, H.X. Zhang, and L. Bai: Studies of electrospun regenerated SF/TSF nanofibers. Polymer 50, 279 (2009).

    Article  CAS  Google Scholar 

  22. C.M. Li, C. Vepari, H.J. Jin, H.J. Kim, and D.L. Kaplan: Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27, 3115 (2006).

    Article  CAS  Google Scholar 

  23. C.M. Li, H.J. Jin, G.D. Botsaris, and D.L. Kaplan: Silk apatite composites from electrospun fibers. J. Mater. Res. 20, 3374 (2005).

    Article  CAS  Google Scholar 

  24. R.E. Unger, K. Peters, M. Wolf, A. Motta, C. Migliaresi, and C.J. Kirkpatrick: Endothelialization of a non-woven silk fibroin net for use in tissue engineering: Growth and gene regulation of human endothelial cells. Biomaterials 25, 5137 (2004).

    Article  CAS  Google Scholar 

  25. A. Schneider, X.Y. Wang, D.L. Kaplan, J.A. Garlick, and C. Egles: Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound heating. Acta Biomater. 5, 2570 (2009).

    Article  CAS  Google Scholar 

  26. J.X. Zhu, H.L. Shao, and X.C. Hu: Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH. Int. J. Biol. Macromol. 41, 469 (2007).

    Article  CAS  Google Scholar 

  27. L. Zhou, X. Chen, Z.Z. Shao, Y.F. Huang, and D.P. Knight: Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. J. Phys. Chem. B 109, 16937 (2005).

    Article  CAS  Google Scholar 

  28. P. Zhou, X. Xie, F. Deng, Z. Ping, X. Xun, and D. Feng: Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and C-13 solid-state NMR. Biochemistry 43, 11302 (2004).

    Article  CAS  Google Scholar 

  29. P. Colomban, H.M. Dinh, J. Riand, L.C. Prinsloo, and B. Mauchamp: Nanomechanics of single silkworm and spider fibres: A Raman and micro-mechanical in situ study of the conformation change with stress. J. Raman Spectrosc. 39, 1749 (2008).

    Article  CAS  Google Scholar 

  30. T. Subbiah, G.S. Bhat, R.W. Tock, S. Pararneswaran, and S.S. Ramkumar: Electrospinning of nanofibers. J. Appl. Polym. Sci. 96, 557 (2005).

    Article  CAS  Google Scholar 

  31. X. Chen, D.P. Knight, and F. Vollrath: Rheological characterization of Nephila spidroin solution. Biomacromolecules 3, 644 (2002).

    Article  CAS  Google Scholar 

  32. H. Teramoto, T. Kameda, and Y. Tamada: Preparation of gel film from Bombyx mori silk sericin and its characterization as a wound dressing. Biosci. Biotechnol. Biochem. 72, 3189 (2008).

    Article  CAS  Google Scholar 

  33. C.W.P. Foo, E. Bini, J. Hensman, D.P. Knight, R.V. Lewis, and D.L. Kaplan: Role of pH and charge on silk protein assembly in insects and spiders. Appl. Phys. A 82, 223 (2006).

    Article  CAS  Google Scholar 

  34. C.B. Cao, J.A. Zhou, X.L. Ma, and J. Lin: Electrospinning of silk fibroin and collagen for vascular tissue engineering. Int. J. Biol. Macromol. 47, 514 (2010).

    Article  Google Scholar 

  35. P. Monti, G. Freddi, A. Bertoluzza, N. Kasai, and M. Tsukada: Raman spectroscopic studies of silk fibroin from Bombyx mori. J. Raman Spectrosc. 29, 297 (1998).

    Article  CAS  Google Scholar 

  36. P. Monti, P. Taddei, G. Freddi, T. Asakura, and M. Tsukada: Raman spectroscopic characterization of Bombyx mori silk fibroin: Raman spectrum of Silk I. J. Raman Spectrosc. 32, 103 (2001).

    Article  CAS  Google Scholar 

  37. A. Motta, L. Fambri, and C. Migliaresi: Regenerated silk fibroin films: Thermal and dynamic mechanical analysis. Macromol. Chem. Phys. 203, 1658 (2002).

    Article  CAS  Google Scholar 

  38. T. Tanaka, M. Kobayashi, S.I. Inoue, H. Tsuda, and J. Magoshi: Biospinning: Change of water contents in drawn silk. J. Polym. Sci., Part B: Polym. Phys. 41, 274 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huili Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hang, Y., Zhang, Y., Jin, Y. et al. Preparation and characterization of electrospun silk fibroin/sericin blend fibers. Journal of Materials Research 26, 2931–2937 (2011). https://doi.org/10.1557/jmr.2011.356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.356

Navigation