Skip to main content
Log in

Engineering materials properties in codimension > 0

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

When thin nanomaterials spontaneously deform into nonflat geometries (e.g, nanorods into nanohelices, thin sheets into ruffled forms), their properties may change by orders of magnitude. We discuss this phenomenon in terms of a formal mathematical concept: codimension c = D - d, the difference between the dimensionality of space D, and that of the object d. We use several independent examples such as the edge stress of graphene nanoribbons, the elastic moduli of nanowires, and the thermal expansion of a modified bead-chain model to demonstrate how this framework can be used to generically understand some nanomaterial properties and how these properties can be engineered by using mechanical constraints to manipulate the codimension of the corresponding structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S. Iijima: Helical microtubules of graphitic carbon Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. H. Dai: Carbon nanotubes: Synthesis, integration, and properties Acc. Chem. Res. 35, 1035 (2002).

    Article  CAS  Google Scholar 

  3. X. Duan and C.M. Lieber: General synthesis of compound semiconductor nanowires Adv. Mater. 12, 298 (2000).

    Article  CAS  Google Scholar 

  4. Y. Wu, J. Xiang, C. Yang, W. Lu, and C.M. Lieber: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures Nature 430, 61 (2004).

    Article  CAS  Google Scholar 

  5. A.K. Geim and K.S. Novoselov: The rise of graphene Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  6. X.Y. Kong and Z.L. Wang: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts Nano Lett. 3, 1625–1631 (2003).

    Article  CAS  Google Scholar 

  7. Z.W. Pan, Z.R. Dai, and Z.L. Wang: Nanobelts of semiconducting oxides Science 291, 1947–1949 (2001).

    Article  CAS  Google Scholar 

  8. K.V. Bets and B.I. Yakobson: Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons Nano Res. 2, 161–166 (2009).

    Article  CAS  Google Scholar 

  9. J.M. Garci-Rauiz, E.-G. Meleroarcia, and S.T. Hyde: Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica Science 323, 362–365 (2009).

    Article  CAS  Google Scholar 

  10. M.H. Huang, C. Boone, M. Roberts, D.E. Savage, M.G. Lagally, N. Shaji, H. Qin, R. Blick, J.A. Nairn, and F. Liu: Nanomechanical architecture of strained bilayer thin films: From design principles to experimental fabrication Adv. Mater. 17, 2860–2864 (2005).

    Article  CAS  Google Scholar 

  11. L. Zhang, E. Deckhardt, A. Weber, C. Schonenberger, and D. Grutzmacher: Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts Nanotechnology 16, 655–663 (2005).

    Article  CAS  Google Scholar 

  12. M. Hazewinkel, Ed.: Encyclopaedia of Mathematics; Springer: New York; 1995.

    Book  Google Scholar 

  13. Encyclopaedia of mathematics:http://eom.springer.de/C/c022870.htm (accessed August 11, 2011).

  14. R. LeSar, R. Najafabadi, and D.J. Srolovitz: Thermodynamics of solid and liquid embedded-atom-method metals: A variational study J. Chem. Phys. 94, 5090–5097 (1991).

    Article  CAS  Google Scholar 

  15. G.A. Mansoori and F.B. Canfield: Variational approach to melting. II. J. Chem. Phys. 51, 4967–4972 (1969).

    Article  CAS  Google Scholar 

  16. J. Steinmetz, S. Kwon, H.J. Lee, E.-H. Abouamad, R. Almairac, C.-B. Gozeac, H. Kim, and Y.W. Park: Polymerization of conducting polymers inside carbon nanotubes Chem. Phys. Lett. 431, 139–144 (2006).

    Article  CAS  Google Scholar 

  17. J. Steinmetz, H.J. Lee, S. Kwon, D.S. Lee, C.-B. Gozeac, E.-H. Abouamad, H. Kim, and Y.W. Park: Routes to the synthesis of carbon nanotube-polyacetylene composites by Ziegler-Natta polymerization of acetylene inside carbon nanotubes Curr. Appl. Phys. 7, 39–41 (2007).

    Article  Google Scholar 

  18. D. Nishide, T. Wakabayashi, T. Sugai, R. Kitaura, H. Kataura, Y. Achiba, and H. Shinohara: Raman spectroscopy of size-selected linear polyyne molecules C2NH2 (n = 46) encapsulated in single-wall carbon nanotubes J. Phys. Chem. C 111, 5178–5183 (2007).

    Article  CAS  Google Scholar 

  19. A.V. Bazilevsky, K. Sun, A.L. Yarin, and C.M. Megaridis: Selective intercalation of polymers in carbon nanotubes Langmuir 23, 7451–7455 (2007).

    Article  CAS  Google Scholar 

  20. G.C. McIntosh, D. Tománek, and Y.W. Park: Energetics and electronic structure of a polyacetylene chain contained in a carbon nanotube Phys. Rev. B 67, 125419 (2003).

    Article  CAS  Google Scholar 

  21. W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, and C.N. Lau: Controlled ripple texturing of suspended graphene and ultrathin graphite membranes Nat. Nanotechnol. 4, 562–566 (2009).

    Article  CAS  Google Scholar 

  22. J.W. Jiang, J.S. Wang, and B.W. Li: Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach Phys. Rev. B 80, 205429 (2009).

    Article  CAS  Google Scholar 

  23. D.Q. Zhang, A. Alkhateeb, H.M. Han, H. Mahmood, D.N. McIlroy, and M.G. Norton: Silicon carbide nanosprings Nano Lett. 3, 983–987 (2003).

    Article  CAS  Google Scholar 

  24. A.M. Wahl: Helical compression and tension springs J. Appl. Mech. 2, A38 (1935).

    Article  Google Scholar 

  25. C.J. Ancker Jr. and J.N. Goodier: Pitch and curvature correction for helical springs J. Appl. Mech. 25, 466 (1958).

    Google Scholar 

  26. W. Young and R. Budynas: Roar’ks Formulas for Stress & Strain, 7th ed.; McGraw-Hill Professional: New York; 1984.

    Google Scholar 

  27. M.H. Gass, U. Bangert, A.L. Bleloch, P. Wang, R.R. Nair, and A.K. Geim: Free-standing graphene at atomic resolution Nat. Nanotechnol. 3, 676–681 (2008).

    Article  CAS  Google Scholar 

  28. L. Tapaszto, G. Dobrik, P. Lambin, and L.P. Biro: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography Nat. Nanotechnol. 3, 397–401 (2008).

    Article  CAS  Google Scholar 

  29. A.K. Geim: Graphene: Status and prospects Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  30. S. Jun: Density-functional study of edge stress in graphene Phys. Rev. B 78, 073405 (2008).

    Article  CAS  Google Scholar 

  31. B. Huang, M. Liu, N.H. Su, J. Wu, W.H. Duan, B.L. Gu, and F. Liu: Quantum manifestations of graphene edge stress and edge instability: A first-principles study Phys. Rev. Lett. 102, 166404 (2009).

    Article  CAS  Google Scholar 

  32. C.K. Gan and D.J. Srolovitz: Trends in graphene edge properties and flake shapes: A first-principles study Phys. Rev. B 81, 125445 (2010).

    Article  CAS  Google Scholar 

  33. V.B. Shenoy, C.D. Reddy, A. Ramasubramaniam, and Y.W. Zhang: Edge-stress-induced warping of graphene sheets and nanoribbons Phys. Rev. Lett. 101, 245501 (2008).

    Article  CAS  Google Scholar 

  34. F.G. Rammerstorfer, F.D. Fischer, and N. Friedl: Buckling of free infinite strips under residual stresses and global tension J. Appl. Mech. 68, 399–404 (2001).

    Article  CAS  Google Scholar 

  35. Z.G. Chen, J. Zou, G. Liu, F. Li, Y. Wang, L. Wang, X.L. Yuan, T. Sekiguchi, H.M. Cheng, and G.Q. Lu: Novel boron nitride hollow nanoribbons ACS Nano 2, 2183–2191 (2008).

    Article  CAS  Google Scholar 

  36. J.-D. Camposelgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, and M. Terrones: Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons Nano Lett. 8, 2773–2778 (2008).

    Article  CAS  Google Scholar 

  37. P.S. Branicio, C.K. Gan, M.H. Jhon, and D.J. Srolovitz: Properties on the edge: Graphene edge energies, edge stresses, edge warping, and the wulf shape of graphene flakes Model. Simul. Mater. Sci. Eng. 19, 054002 (2011).

    Article  CAS  Google Scholar 

  38. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, and S.B. Sinnott: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons J. Phys: Condens. Matter 14, 783–802 (2002).

    CAS  Google Scholar 

  39. Y. Liu, A. Dobrinsky, and B.I. Yakobson: Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 105, 235502 (2010).

    Article  CAS  Google Scholar 

  40. Q. Lu and R. Huang: Excess energy and deformation along free edges of graphene nanoribbons Phys. Rev. B 81, 155410 (2010).

    Article  CAS  Google Scholar 

  41. G.H. Lui, L. Liu, K.F. Mak, G.W. Flynn, and T.F. Heinz: Ultraflat graphene Nature 462, 339–341 (2009).

    Article  CAS  Google Scholar 

  42. J.F. Nye: Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: Oxford, UK; 1984.

    Google Scholar 

  43. I.A. Ovid’ko: Nanodefects in nanostructures Phil. Mag. Lett. 83, 611–620 (2003).

    Article  CAS  Google Scholar 

  44. M. Terrones, F. Banhart, N. Grobert, J.-C. Charlier, H. Terrones, and P.M. Ajayan: Molecular junctions by joining single-walled carbon nanotubes Phys. Rev. Lett. 89, 075505 (2002).

    Article  CAS  Google Scholar 

  45. M.Y. Gutkin and I.A. Ovid’ko: Glide of hollow fibers at the bridging stage of fracture in ceramic nanocomposites Scripta Mater. 59, 414–417 (2008).

    Article  CAS  Google Scholar 

  46. M.Y. Gutkin and I.A. Ovid’ko: Effect of y-junction nanotubes on strengthening of nanocomposites Scripta Mater. 61, 1149–1152 (2009).

    Article  CAS  Google Scholar 

  47. A.G. Shtukenberg, J. Freudenthal, and B. Kahr: Reversible twisting during helical hippuric acid crystal growth J. Am. Chem. Soc. 132, 9341–9349 (2010).

    Article  CAS  Google Scholar 

  48. H. Liang and L. Mahadevan: The shape of a long leaf Proc. Natl. Acad. Sci. 106, 22049–22054 (2009).

    Article  CAS  Google Scholar 

  49. D.C. Liu and J. Nocedal: On the limited memory BFGS method for large-scale optimization Math. Program. 45, 503–528 (1989).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. M. Haataja, Prof. Y.W. Zhang, Prof. S. Safran, Prof. C. Arnold, Dr. C.K. Gan, and Dr. C. Majidi for enlightening discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo S. Branicio.

Appendix A: Calculation of Graphene Edge Energy and Stress

Appendix A: Calculation of Graphene Edge Energy and Stress

GNR edge energy and stress are calculated in a similar manner as Jun30 and Gan and Srolovitz.32 The edge energy (per unit length) Ee as a function of edge orientation a is defined as

$$E_\text{e} \left( \alpha \right) = \frac {1} {2L} \left[ E_\text{GNR}^N \left(\alpha \right) - NE_\text{B} \right],$$
((A1))

where \(E_\text{GNR}^N\left( \alpha \right)\) is the total energy of a GNR with N atoms, length L, and edge orientation a, and EB is the energy per atom in a bulk (infinite) flat graphene sheet. The factor of 2 in the denominator of Eq. (A1) accounts for the fact that a GNR has two (parallel) edges. For narrow GNRs, Ee(α) depends on the GNR width because of interactions between the edges. This effect decays rapidly with GNR width. Therefore, we perform simulations on GNRs of widths in excess of 100 Å for which Ee(α) reaches the asymptotic value for large widths.

For all edge types, Ee(α) was calculated by minimizing the total energy with respect to all atomic coordinates at T = 0. We employed the limited-memory Broyden–Fletcher–Goldfarb–Shanno49 method to relax the atomic structures (both in c = 0 and 1) until it converged to within 10–10 eV/atom. In the c = 1 case, noise was added to the initial atomic positions (i.e., perturbations in the atom positions from the flat structure) in order to break the symmetry of the problem.

We calculate the edge stress τe by straining the equilibrium (zero stress) GNR and interpolating the resultant system energy versus strain curve at ∈ = 0. For c = 0, both compressive and tensile strains were employed, for c = 1, where the GNR buckles out of plane for compressive strains, only tensile strains were applied in order to determine τe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branicio, P.S., Jhon, M.H. & Srolovitz, D.J. Engineering materials properties in codimension > 0. Journal of Materials Research 27, 619–626 (2012). https://doi.org/10.1557/jmr.2011.306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.306

Navigation