Skip to main content

Advertisement

Log in

High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Calcium phosphates form a vast family of biominerals, which have attracted much attention in fields like biology, medicine, and materials science, to name a few. Solid state Nuclear Magnetic Resonance (NMR) is one of the few techniques capable of providing information about their structure at the atomic level. Here, examples of recent advances of solid state NMR techniques are given to demonstrate their suitability to characterize in detail synthetic and biological calcium phosphates. Examples of high-resolution 31P, 1H (and 17O), solid state NMR experiments of a 17O-enriched monocalcium phosphate monohydrate-monetite mixture and of a mouse tooth are presented. In both cases, the advantage of performing fast Magic Angle Spinning NMR experiments at high magnetic fields is emphasized, notably because it allows very small volumes of sample to be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I
FIG. 1.
TABLE II
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

References

  1. J.C. Elliott: Structure and chemistry of the apatites and other calcium orthophosphates, in Studies in Inorganic Chemistry, Vol. 18 (Elsevier, Amsterdam 1994).

  2. S.V. Dorozhkin: Calcium orthophosphates. J. Mater. Sci. 42, 1061 (2007).

    Article  CAS  Google Scholar 

  3. S.V. Dorozhkin and M. Epple: Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41, 3130 (2002).

    Article  CAS  Google Scholar 

  4. S.V. Dorozkhin: Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 6, 715 (2010).

    Article  CAS  Google Scholar 

  5. L. Wang and G.H. Nancollas: Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 108, 4628 (2008).

    Article  CAS  Google Scholar 

  6. D. Bazin, C. Chappard, C. Combes, X. Carpentier, S. Rouzière, G. André, G. Matzen, M. Allix, D. Thiaudière, S. Reguer, P. Jungers, and M. Daudon: Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos. Int. 20, 1065 (2009).

    Article  CAS  Google Scholar 

  7. R.G. Handschin and W.B. Stern: X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone 16, S355 (1995).

    Article  Google Scholar 

  8. C. Rey, C. Combes, C. Drouet, and M.J. Glimcher: Bone mineral: Update on chemical composition and structure. Osteoporos. Int. 20, 1013 (2009).

    Article  CAS  Google Scholar 

  9. M.A. Rubin, I. Jasiuk, J. Taylor, J. Rubin, T. Ganey, and R.P. Apkarian: TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33, 270 (2003).

    Article  Google Scholar 

  10. M.A. Rubin and I. Jasiuk: The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36, 653 (2005).

    Article  Google Scholar 

  11. L.M. Miller, V. Vairavamurthy, M.R. Chance, R. Mendelsohn, E.P. Paschalis, F. Betts, and A.L. Boskey: In situ analysis of mineral content and crystallinity in bone using infrared microspectroscopy, of the ν4 (PO4)3−vibration. Biochim. Biophys. Acta 1527, 11 (2001).

    Article  CAS  Google Scholar 

  12. C. Rey, B. Collins, M. Shimizu, and M.J. Glimcher: Resolution enhanced Fourier transform infrared spectroscopic study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: I. Investigation in the ν4 PO4 domain. Calcif. Tissue Int. 46, 384 (1990).

    Article  CAS  Google Scholar 

  13. E.P. Paschalis, F. Betts, E. Di Carlo, R. Mendelsohn, and A.L. Boskey: FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif. Tissue Int. 61, 480 (1997).

    Article  CAS  Google Scholar 

  14. S. Takata, A. Shibata, H. Yonezu, T. Yamada, M. Takahashi, A. Abbaspour, and N. Yasui: Biophysic evaluation of bone quality-application of Fourier transform infrared spectroscopy and phosphorus-31 solid-state nuclear-magnetic-resonance spectroscopy. J. Med. Invest. 51, 133 (2004).

    Article  Google Scholar 

  15. G. Sauer, W.B. Zunic, J.R. Durig, and R.E. Wuthier: Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates. Calcif. Tissue Int. 54, 414 (1994).

    Article  CAS  Google Scholar 

  16. C. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barroug: Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials. Mater. Sci. Eng. C27, 198 (2007).

    Article  CAS  Google Scholar 

  17. D. Laurencin, A. Wong, W. Chrzanowski, J.C. Knowles, D. Qiu, D.M. Pickup, R.J. Newport, Z. Gan, M.J. Duer, and M.E. Smith: Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 12, 1081 (2010).

    Article  CAS  Google Scholar 

  18. N. Binsted, S.S. Hasnain, and D.W.L Hukins: Developmental changes in bone mineral structure demonstrated by extended X-ray absorption fine structure (EXAFS) spectroscopy. Biochem. Biophys. Res. Commun. 107, 89 (1982).

    Article  CAS  Google Scholar 

  19. J.E. Harries, D.W.L Hukins, and S.S. Hasnain: Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif. Tissue Int. 43, 250 (1988).

    Article  CAS  Google Scholar 

  20. W. Kolodziejski: Solid-state NMR studies of bone. Top. Curr. Chem. 246, 235 (2005).

    Article  CAS  Google Scholar 

  21. F. Pourpoint, C. Gervais, L. Bonhomme-Coury, T. Azaïs, C. Coelho, F. Mauri, B. Alonso, F. Babonneau, and C. Bonhomme: Calcium phosphates and hydroxyapatites: Solid state NMR experiments and first-principles calculations. Appl. Magn. Reson. 32, 435 (2007).

    Article  CAS  Google Scholar 

  22. S. Maltsev, M.J. Duer, R.C. Murray, and C. Jaeger: A solid-state NMR comparison of the mineral structure in bone from diseased joints in the horse. J. Mater. Sci. 42, 8804 (2007).

    Article  CAS  Google Scholar 

  23. A. Kaflak-Hachulska, A. Samoson, and W. Kolodziejski: 1H MAS and 1H —> 31P CP/MAS NMR Study of Human Bone Mineral. Calcif. Tissue Int. 73, 476 (2003).

    Article  CAS  Google Scholar 

  24. A. Kaflak and W. Kolodziejski: Complementary information on water and hydroxyl groups in nanocrystalline carbonated hydroxyapatites from TGA, NMR and IR measurements. J. Mol. Struct. 990, 263 (2011).

    Article  CAS  Google Scholar 

  25. E.E. Wilson, A. Awonusi, M.D. Morris, D.H. Kohn, M.M.J Tecklenburg, and L.W. Beck: Three structural roles for water in bone observed by solid-state NMR. Biophys. J. 90, 3722 (2006).

    Article  CAS  Google Scholar 

  26. D.G. Reid, G.J. Jackson, M.J. Duer, and A.L. Rodgers: Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: Evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall’s plaque, pathogenesis and prophylaxis. J. Urol. 185, 725 (2011).

    Article  CAS  Google Scholar 

  27. D.G. Reid, M.J. Duer, R.C. Murray, and E.R. Wise: The organic mineral interface in teeth is like that in bone and dominated by polysaccharides: Universal mediators of normal calcium phosphate biomineralization in vertebrates? Chem. Mater. 20, 3549 (2008).

    Article  CAS  Google Scholar 

  28. S.J. Huang, Y.L. Tsai, Y.L. Lee, C.P. Lin, and J.C.C Chan: Structural model of rat dentin revisited. Chem. Mater. 21, 2583 (2009).

    Article  CAS  Google Scholar 

  29. J. Kolmas and W. Kołodziejski: Concentration of hydroxyl groups in dental apatites: A solid-state 1H MAS NMR study using inverse 31P —> 1H cross-polarization. Chem. Commun. 4390 (2007).

    Google Scholar 

  30. J.P. Yesinowski and H. Eckert: Hydrogen environments in calcium phosphates: 1H MAS NMR at high spinning speeds. J. Am. Chem. Soc. 109, 6274 (1987).

    Article  CAS  Google Scholar 

  31. D. Laurencin, A. Wong, R. Dupree, and M.E. Smith: Natural abundance 43Ca solid-state NMR characterization of hydroxyapatite: Identification of the two calcium sites. Magn. Reson. Chem. 46, 347 (2008).

    Article  CAS  Google Scholar 

  32. C. Gervais, D. Laurencin, A. Wong, F. Pourpoint, J. Labram, B. Woodward, A.P. Howes, K.J. Pike, R. Dupree, F. Mauri, C. Bonhomme, and M.E. Smith: New perspectives on calcium environments in inorganic materials containing calcium-oxygen bonds: A combined computational-experimental 43Ca NMR approach. Chem. Phys. Lett. 464, 42 (2008).

    Article  CAS  Google Scholar 

  33. W.P. Rothwell, J.S. Waugh, and J.P. Yesinowski: High resolution variable-temperature phosphorus-31 NMR of solid calcium phosphates. J. Am. Chem. Soc. 102, 2637 (1980).

    Article  CAS  Google Scholar 

  34. J. Kolmas, A. Ślósarczyk, A. Wojtowicz, and W. Kolodziejski: Estimation of the specific surface area of apatites in human mineralized tissues using 31P MAS NMR. Solid State Nucl. Magn. Reson. 32, 53 (2007).

    Article  CAS  Google Scholar 

  35. G. Cho, Y. Wu, and J.L. Ackerman: Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300, 1123 (2003).

    Article  CAS  Google Scholar 

  36. F. Pourpoint, A. Kolassiba, C. Gervais, T. Azaïs, L. Bonhomme-Coury, C. Bonhomme, and F. Mauri: First-principles calculations of NMR parameters in biocompatible materials science: The case study of calcium phosphates, β- and γ-Ca(PO3)2. Combination with MAS-J experiments. Chem. Mater. 19, 6367 (2007).

    Article  CAS  Google Scholar 

  37. Y.H. Tseng, C.Y. Mou, and J.C.C Chan: Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation. J. Am. Chem. Soc. 128, 6909 (2006).

    Article  CAS  Google Scholar 

  38. C. Jäger, T. Welzel, W. Meyer-Zaika, and M. Epple: A solid-sate NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn. Reson. Chem. 44, 573 (2006).

    Article  CAS  Google Scholar 

  39. T. Isobe, S. Nakamura, R. Nemoto, M. Senna, and H. Sfihi: Solid-state nuclear magnetic resonance study of the local structure of calcium phosphate nanoparticles synthesized by a wet-mechanochemical reaction. J. Phys. Chem. B. 106, 5169 (2002).

    Article  CAS  Google Scholar 

  40. D. Laurencin, N. Almora-Barrios, N.H. de Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J.C. Knowles, R.J. Newport, A. Wong, Z. Gan, and M.E. Smith: Magnesium incorporation into hydroxyapatite. Biomaterials 32, 1826 (2011).

    Article  CAS  Google Scholar 

  41. S.E. Ashbrook and M.E. Smith: Solid state 17O NMR—an introduction to the background principles and applications to inorganic materials. Chem. Soc. Rev. 35, 718 (2006).

    Article  CAS  Google Scholar 

  42. K.J.D MacKenzie and M.E. Smith: Multinuclear Solid State NMR of Inorganic Materials (Pergamon Materials Series, Pergamon Press, Oxford, UK, 2002).

    Google Scholar 

  43. G. Wu, D. Rovnyank, B. Sun, and R.G. Griffin: High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei. Chem. Phys. Lett. 249, 210 (1995).

    Article  Google Scholar 

  44. C.J. Pickard and F. Mauri: All-electron magnetic response pseudopotentials NMR chemical shifts. Phys. Rev. B: Condens.Mater 63, 245101 (2001).

    Article  CAS  Google Scholar 

  45. H. Chappell, M. Duer, N. Groom, C. Pickard, and P. Bristowe: Probing the surface structure of hydroxyapatite using NMR spectroscopy and first-principles calculations. Phys. Chem. Chem. Phys. 10, 600 (2008).

    Article  CAS  Google Scholar 

  46. J.P. Amoureux, C. Fernandez, and S. Steuernagel: Z filtering in. MQMAS NMR. J. Magn. Reson. A 123, 116 (1996).

    Article  CAS  Google Scholar 

  47. B.M. Fung, A.K. Khitrin, and K. Ermolaev: An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97 (2000).

    Article  CAS  Google Scholar 

  48. C. Coelho, J. Rocha, P.K. Madhu, and L. Mafra: Practical aspects of Lee-Goldburg based CRAMPS techniques for high resolution 1H NMR spectroscopy in solids: Implementation and applications. J. Magn. Reson. 194, 264 (2008).

    Article  CAS  Google Scholar 

  49. B.J. Van Rossum, H. Förster, and H.J.M. de Groot: High field and high-speed CP MAS 13C NMR heteronuclear dipolar correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling. J. Magn. Reson. 124, 516 (1997).

    Article  Google Scholar 

  50. PARATEC (PARAllel Total Energy Code) by B. Pfrommer, D. Raczkowski, A. Canning, S.G. Louie; Lawrence Berkeley National Laboratory (with contributions from F. Mauri, M. Cote, Y. Yoon, C. Pickard and P. Heynes) based on the GIPAW approach (see Ref. 44); for more information see www.nersc.gov/projects/paratec.

  51. J.P. Perdew, K. Burke and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865e8 (1996).

    Article  Google Scholar 

  52. N. Troulier and J.L. Martins: Efficient pseudopotentials for plane-wave calculations. 2. Operators for fast iterative diagonalization. Phys. Rev. B 43, 1993 (1991).

    Article  Google Scholar 

  53. L. Kleinman and D. Bylander: Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425 (1982).

    Article  CAS  Google Scholar 

  54. L.W. Schroeder, E. Prince, and B. Dickens: Hydrogen bonding in Ca(H2PO4)2·H2O as determined by neutron diffraction. Acta Crystallogr. B B31, 9 (1975).

    Article  CAS  Google Scholar 

  55. M. Catti, G. Ferraris, and A. Filhol: A hydrogen-bonding in crystalline state: CaHPO4 (Monetite), P-1 or P1–Novel neutron-diffraction study. Acta Crystallogr. B 33, 1223 (1977).

    Article  Google Scholar 

  56. M. Profeta, F. Mauri, and C.J. Pickard: Accurate first principles prediction of 17O NMR parameters in SiO2: Assignment of the zeolite ferrierite spectrum. J. Am. Chem. Soc. 125, 541 (2003).

    Article  CAS  Google Scholar 

  57. B.R. Cherry, T.M. Alam, C. Click, R.K. Brow, and Z.H. Gan: Combined ab initio computational and solid-state 17O MAS NMR studies of crystalline P2O5. J. Phys. Chem. B. 107, 4894 (2003).

    Article  CAS  Google Scholar 

  58. A. Flambard, L. Montagne, and L. Delevoye: A new 17O-isotopic enrichment method for the NMR characterisation of phosphate compounds. Chem. Commun. 32, 3426 (2006).

    Article  CAS  Google Scholar 

  59. C. Gervais, F. Babonneau, and M.E. Smith: Detection, quantification, and magnetic field dependence of solid-state 17O NMR of X-O-Y (X, Y = Si, Ti) linkages: Implications for characterizing amorphous titania-silica-based materials. J. Phys. Chem. B 105, 1971 (2001).

    Article  CAS  Google Scholar 

  60. C. Gervais, M. Profeta, V. Lafond, C. Bonhomme, T. Azaïs, H. Mutin, C.J. Pickard, F. Mauri, and F. Babonneau: Combined ab initio computational and experimental multinuclear solid-state magnetic resonance study of phenylphosphonic acid. Magn. Reson. Chem. 42, 445 (2004).

    Article  CAS  Google Scholar 

  61. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.O. Durand, B. Bujoli, Z. Gan, and G. Hoatson: Modelling one and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70 (2002).

    Article  CAS  Google Scholar 

  62. C. Gervais, R. Dupree, K.J. Pike, C. Bonhomme, M. Profetta, C.J. Pickard, and F. Mauri: Combined first-principles computational and experimental multinuclear solid-state NMR investigation of amino acids. J. Phys. Chem. A 109, 6960 (2005).

    Article  CAS  Google Scholar 

  63. C. Gervais, M. Profeta, F. Babonneau, C.J. Pickard, and F. Mauri: Ab-initio calculations of NMR parameters of highly coordinated oxygen sites in aluminosilicates. J. Phys. Chem. B 108, 13249 (2004).

    Article  CAS  Google Scholar 

  64. C. Gervais, C. Coelho, T. Azaïs, J. Maquet, G. Laurent, F. Pourpoint, C. Bonhomme, P. Florian, B. Alonso, G. Guerrero, P.H. Mutin, and F. Mauri: First principles NMR calculations of phenylphosphinic acid C6H5HPO(OH): Assignments, orientation of tensors by local field experiments and effect of molecular motion. J. Magn. Reson. 187, 131 (2007).

    Article  CAS  Google Scholar 

  65. L. Frydman and J.S. Harwood: Isotropic spectra of half–integer quadrupolar spins from bidimensional MAS NMR. J. Am. Chem. Soc. 117, 5367 (1995).

    Article  CAS  Google Scholar 

  66. A. Samoson, E. Lippmaa, and A. Pines: High resolution solid state NMR averaging of second-order effects by means of a double-rotor. Mol. Phys. 65, 1013 (1988).

    Article  CAS  Google Scholar 

  67. I. Hung, A.P. Howes, B.G. Parkinson, T. Anupold, A. Samoson, S.P. Brown, P.F. Harrison, D. Holland, and R. Dupree: Determination of the bond-angle distribution in vitreous B2O3 by 11B double rotation (DOR) NMR spectroscopy. J. Solid State Chem. 182, 2402 (2009).

    Article  CAS  Google Scholar 

  68. C. Roiland: Etude de l’ordre local dans des phosphates désordonnés modèles par spectroscopies RMN et RAMAN. PhD Thesis (Orléans University, France, 2007).

    Google Scholar 

  69. D.L. Bryce, K. Eichele, and R.E. Wasylishen: An 17O NMR and quantum chemical study of monoclinic and orthorhombic polymorphs of triphenylphosphine oxide. Inorg. Chem. 42, 5085 (2003).

    Article  CAS  Google Scholar 

  70. I. Hung, A. Wong, A.P. Howes, T. Anupõld, J. Past, A. Samoson, X. Mo, G. Wu, M.E. Smith, S.P. Brown, and R. Dupree: Determination of NMR interaction parameters from double rotation NMR. J. Magn. Reson. 188, 246 (2007).

    Article  CAS  Google Scholar 

  71. C. Bonhomme, C. Gervais, C. Coelho, F. Pourpoint, T. Azaïs, L. Bonhomme-Coury, F. Babonneau, G. Jacob, M. Ferrari, D. Canet, J.R. Yates, C.J. Pickard, S.A. Joyce, and F. Mauri: New perspectives in the PAW/GIPAW approach: JP-O-Si coupling constants, antisymmetric parts of shift tensors and NQR predictions. Magn. Reson. Chem. 48, S86 (2010).

    Article  CAS  Google Scholar 

  72. E.M. Menger and W.S. Veeman: Quadrupole effects in high-resolution phosphorus-31 solid state NMR spectra of triphenylphosphine copper (I) complexes. J. Magn. Reson. 46, 257 (1982).

    CAS  Google Scholar 

  73. D. Massiot, F. Fayon, B. Alonso, J. Trebosc, and J.P. Amoureux: Chemical bonding differences evidenced from J-coupling in solid state NMR experiments involving quadrupolar nuclei. J. Magn. Reson. 164, 160 (2003).

    Article  CAS  Google Scholar 

  74. V. Montouillout, C.M. Morais, A. Douy, F. Fayon, and D. Massiot: Toward a better description of gallo-phosphate materials in solid-state NMR: 1D and 2D correlation studies. Magn. Reson. Chem. 44, 770 (2006).

    Article  CAS  Google Scholar 

  75. C. Martineau, F. Fayon, C. Legein, J.Y. Buzare, G. Silly, and D. Massiot: Accurate heteronuclear J-coupling measurements in dilute spin systems using the multiple-quantum filtered J-resolved experiment. Chem. Commun. 26, 2720 (2007).

    Article  CAS  Google Scholar 

  76. A. Lesage: Recent advances in solid-state NMR spectroscopy of spin I = 1/2 nuclei. Phys. Chem. Chem. Phys. 11, 6876 (2009) (and references therein).

    Article  CAS  Google Scholar 

  77. J.H. Bowes and M.M. Murray: The composition of human enamel and dentine. Biochem. J. 30, 977 (1936).

    Article  CAS  Google Scholar 

  78. G. Melacini, Y. Feng, and M. Goodman: Acetyl-terminated and template-assembled collagen-based polypeptides composed of Gly-Pro-Hyp sequences. 3. Conformational analysis by 1H-NMR and molecular modeling studies. J. Am. Chem. Soc. 118, 10359 (1996).

    Article  CAS  Google Scholar 

  79. D. Sakellariou, G. Le Goff, and J.F. Jacquinot: High-resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning. Nature 447, 694 (2007).

    Article  CAS  Google Scholar 

  80. A. Wong, P.M. Aguiar, and D. Sakellariou: Slow magic-angle coil spinning: A high-sensitivity and high-resolution NMR strategy for microscopic biological specimens. Magn. Reson. Med. 63, 269 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the TGIR RMN THC FR3050 for conducting the research is gratefully acknowledged, as well as from CNRS (http://www.tgir-rmn.org/). The Royal Society is acknowledged for a Montpellier-Warwick partnership grant (JP090313), and Engineering and Physical Sciences Research Council (EPSRC) and the University of Warwick are thanked for partial funding of NMR work at Warwick. DL thanks the 7th European Community Framework Program, which supported this research by a Marie Curie European Reintegration Grant. Calculations were performed on the Institut du Developpement et des Ressources en Informatique Scientifique (IDRIS) supercomputer centre of the CNRS (Project 091461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Laurencin.

Additional information

This paper has been selected as an Invited Feature Paper.

Electronic supplementary material

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourpoint, F., Diogo, C.C., Gervais, C. et al. High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals. Journal of Materials Research 26, 2355–2368 (2011). https://doi.org/10.1557/jmr.2011.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.250

Navigation