Skip to main content
Log in

The effect of cooling rate on thermophysical properties of magnesium alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermophysical properties such as phase-transformation temperatures and enthalpy of solidification depend on the composition and on the solidification conditions. To analyze the effects of the cooling rate on these properties, three commercial magnesium alloys (AZ91D, AM60B, and AE44) have been studied. Phase-transformation temperatures and enthalpy of solidification of these alloys have been measured using differential scanning calorimetry. Solidification curves have been obtained experimentally and compared with thermodynamic calculations. For all the studied alloys, it has been found that with increasing cooling rate, liquidus temperature increases slightly, whereas solidus temperature decreases. Enthalpy of solidification increases significantly with increasing cooling rate. Finally, relationships of phase-transformation temperature and enthalpy of solidification as a function of cooling rate have been established on the basis of the general power law. Using these relationships, the phase-transformation temperature and enthalpy of solidification have been predicted at high cooling rates and compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
TABLE II.
TABLE III.
TABLE IV.
FIG. 4.
FIG. 5.
TABLE V.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

References

  1. A. Luo: Understanding the solidification of magnesium alloys, in Proceedings of the Third International Magnesium Conference, Manchester, UK, 1997, pp. 449–464.

    Google Scholar 

  2. D.H. StJohn, A.K. Dahle, T. Abbott, M.D. Nave, and M. Qian: Solidification of cast magnesium alloys, in Proceedings of the Minerals, Metals and Materials Society (TMS), Magnesium Technology, San Diego, CA, 2003, pp. 95–100.

    Google Scholar 

  3. Y.W. Riddle and M.M. Makhlouf: Characterizing solidification by non- equilibrium thermal analysis, in Proceedings of the Minerals, Metals and Materials Society (TMS), Magnesium Technology, San Diego, CA, 2003, pp. 101–106.

    Google Scholar 

  4. A. Lindemann, J. Schmidt, M. Todte, and T. Zeuner: Thermal analytical investigations of the magnesium alloys AM60 and AZ91 including the melting range. Thermochim. Acta 382(1–2), 269 (2002).

    Article  CAS  Google Scholar 

  5. M. Ohno, D. Mirkovic, and R. Schmid-Fetzer: On liquidus and solidus temperature in AZ and AM alloys, in Proceedings of the Minerals, Metals and Materials Society (TMS), San Antonio, TX, 2006, pp. 129–132.

    Google Scholar 

  6. M.D. Nave, A.K. Dahle, and D.H. StJohn: Eutectic growth morphologies in magnesium-aluminum alloys, in Proceedings of the Minerals, Metals and Materials Society (TMS), Nashville, TN, 2000, pp. 233–242.

    Google Scholar 

  7. L.P. Barber: Characterization of the solidification behavior and resultant microstructures of magnesium-aluminum alloys. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, 2004.

    Google Scholar 

  8. A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. StJohn: Development of the as-cast microstructure in magnesium-aluminum alloys. J. Light Met. 1(1), 61 (2001).

    Article  Google Scholar 

  9. S. Barbagallo, H.I. Laukli, O. Lohne, and E. Cerri: Divorced eutectic in a HPDC magnesium alloy. J. Alloys Compd. 378(1–2), 226 (2004).

    Article  CAS  Google Scholar 

  10. M.D. Nave, A.K. Dahle, and D.H. StJohn: The effect of solidification rate on the structure of magnesium-aluminum eutectic grains. Int. Cast Met. Res. 13(1), (2000).

    Google Scholar 

  11. P. Bassani, E. Gariboldi, and A. Tuissi: Calorimetric analysis of AM60 magnesium alloy. J. Therm. Anal. Calorim. 80(3), 739 (2005).

    Article  CAS  Google Scholar 

  12. Q. Han, E.A. Kenic, S.R. Agnew, and S. Viswanathan: Solidification behavior of commercial magnesium alloys, in Proceedings of the Mineral, Metals and Materials Society (TMS), Indianapolis, IN, 2001, pp. 81–86.

    Google Scholar 

  13. Y.W. Riddle, L.P. Barber, and M.M. Makhlouf: Characterization of Mg alloy solidification and as-cast microstructure, in Proceedings of the Mineral, Metals and Materials Society (TMS), Charlotte, NC, 2004, pp. 203–208.

    Google Scholar 

  14. S.W. Chen and C.C. Huang: Solidification curves of Al–Cu, Al–Mg and Al–Cu–Mg alloys. Acta Mater. 44(5), 1955 (1996).

    Article  CAS  Google Scholar 

  15. M. Aljarrah, M.A. Parvez, Jian Li, E. Essadiqi, and M. Medraj: Microstructural characterization of Mg–Al–Sr alloys. J. Sci. Technol. Adv. Mater. 8, 237 (2007).

    Article  CAS  Google Scholar 

  16. D. Mirković, J. Gröbner, and R. Schmid-Fetzer: Solidification curves of AZ-magnesium alloys determined by DSC experiments and heat-transfer model (DSC-HTM), in Proceedings of the 6th International Conference Magnesium Alloys and Their Application, 2003, Wolfsburg, pp. 842–847.

    Google Scholar 

  17. Z.Q. Kuang, J.X. Zhang, X.H. Zhang, K.F. Liang, and P.C.W. Fung: Scaling behaviors in the thermoelastic martensitic transformation of Co. Solid State Commun. 114(4), 231 (2000).

    Article  CAS  Google Scholar 

  18. J.X. Zhang, F. Zhong, and G.G. Siu: The scanning-rate dependence of energy dissipation in first-order phase transition of solids. Solid State Commun. 97(10), 847 (1996).

    Article  CAS  Google Scholar 

  19. C. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: FactsSge thermochemical software and databases–recent developments. CALPHAD 33(2), 295 (2009).

    Article  CAS  Google Scholar 

  20. A. Kielbus: The influence of casting temperature on castability and structure of AJ62 alloy. Arch. Mater. Sci. Eng. 28(6), 345 (2007).

    Google Scholar 

  21. J. Mahamoudi and H. Fredriksson: Thermal analysis of copper-tin alloys during rapid solidification. J. Mater. Sci. 35, 4977 (2000).

    Article  Google Scholar 

  22. K.A. Jackson: Liquid Metals and Solidification (ASM, Cleveland, OH, 1958), p. 174.

    Google Scholar 

  23. K.-O. Yu: Modeling for Casting and Solidification Processing (M. Dekker Inc., New York, ISBN:0-8247-8881-8, 2002), p. 202.

    Google Scholar 

  24. A.J. Gesing, N.D. Reade, J.H. Sokolowski, C. Blawert, D. Fechner, and N. Hort: Development of Recyclable Mg-based Alloys: AZ91D and AZC1231 Phase Information Derived from Heating/Cooling Curve Analysis (TMS, Warrendale, PA, 2010, Magnesium Technology), pp. 97–105.

    Google Scholar 

  25. Y.-Z. Zhao, Y- H. Zhao, Q. Li, S.-L. Chen, J.-Y. Zhang, and K.-C. Chou: Effects of step size and cut-off limit of residual liquid amount on solidification simulation of Al–Mg–Zn system with Scheil model. Intermetallics 17, 491 (2009).

    Article  CAS  Google Scholar 

  26. M. Avedesian and H. Baker: ASM Specialty Handbook: Magnesium and Magnesium Alloys (ASM International, Cleveland, OH, 1998).

    Google Scholar 

  27. P. Bakke and H. Westengen: The role of rare earth elements in structure and property control of magnesium die casting alloys, in Proceedings: Magnesium Technology, 2005(TMS), San Francisco, CA, 2005, pp. 291–296.

    Google Scholar 

  28. W. Riddle, L.P. Barber, and M.M. Makhlouf: Characterization of Mg alloy solidification and as-cast microstructures, in Proceedings: Magnesium Technology 2004(TMS), Charlotte, NC, 2004, pp. 203–208

    Google Scholar 

  29. J. Zhang, Z.-S. Li, Z.-X. Guo, and F.-S. Pan: Solidification microstrucural constituent and its crystallographic morphology of permanent-mould-cast Mg–Zn–Al alloys. Trans. Nonferrous Met. Soc. China, 16(2), 4522006.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank AUTO21 for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Medraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.N., Aljarrah, M., Wood, J.T. et al. The effect of cooling rate on thermophysical properties of magnesium alloys. Journal of Materials Research 26, 974–982 (2011). https://doi.org/10.1557/jmr.2011.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.24

Navigation