Skip to main content
Log in

Peculiarities of the Eutectic Mg–Li Alloy Thermal Expansion, Heat Capacity and Thermal Conductivity Behavior in the Temperature Range of 80 K to 293 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental studies of the thermal expansion, heat capacity and thermal conductivity of the eutectic magnesium–lithium alloy (with composition of 23.0 at.% lithium) were performed in the temperature range of 80 K to 400 K. The relative elongation and thermal expansion coefficient of this ultralight magnesium–lithium alloy were measured by the dilatometric method using a DIL-402C setup. Measurements of the heat capacity were carried out by the differential scanning calorimetry using a DSC 404 F1 setup. Investigation of the thermal conductivity was performed by the hot-disk technique using a Hot-Disk TPS 2500S setup. The temperature dependences were constructed and tables of recommended values of the investigated properties were presented. It was found that in Mg77Li23 alloy a phase transition occurs in the range of 223 K to 253 K, where the heat capacity and the linear thermal expansion coefficient change abruptly. This transition is presumably related to the martensitic transformation of the lithium-rich bcc magnesium–lithium alloys to the hcp structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data presented in this article are available upon request from the corresponding author.

References

  1. ASh. Agazhanov, R.N. Abdullaev, D.A. Samoshkin, Yu.M. Kozlovskii, Thermophys. Aeromech. 29, 623 (2022). https://doi.org/10.1134/S086986432204014X

    Article  ADS  Google Scholar 

  2. A.A. Nayeb-Hashemi, J.B. Clark, A.D. Pelton, Bull. Alloy Phase Diagr. 5, 365 (1984). https://doi.org/10.1007/BF02872951

    Article  Google Scholar 

  3. W. Gasior, Z. Moser, W. Zakulski, G. Schwitzgebel, Metall. Mater. Trans. A 27, 2419 (1996). https://doi.org/10.1007/BF02652335

    Article  Google Scholar 

  4. H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, Mater. Sci. Forum 350, 31 (2000). https://doi.org/10.4028/www.scientific.net/MSF.350-351.31

    Article  Google Scholar 

  5. R.Z. Wu, Y.D. Yan, G.X. Wang, L.E. Murr, W. Han, Z.W. Zhang, M.L. Zhang, Int. Mater. Rev. 60, 65 (2015). https://doi.org/10.1179/1743280414Y.0000000044

    Article  ADS  Google Scholar 

  6. X. Peng, W. Liu, G. Wu, H. Ji, W. Ding, J. Mater. Sci. Technol. 99, 193 (2022). https://doi.org/10.1016/j.jmst.2021.04.072

    Article  Google Scholar 

  7. C.P. Liang, H.R. Gong, J. Alloys Compd. 489, 130 (2010). https://doi.org/10.1016/j.jallcom.2009.09.032

    Article  Google Scholar 

  8. C.S. Barrett, D.F. Clifton, JOM 2, 1329 (1950). https://doi.org/10.1007/BF03399158

    Article  Google Scholar 

  9. C.S. Barrett, Acta Metall. 4, 528 (1956). https://doi.org/10.1016/0001-6160(56)90049-9

    Article  Google Scholar 

  10. R.N. Abdullaev, R.A. Khairulin, Yu.M. Kozlovskii, ASh. Agazhanov, S.V. Stankus, Trans. Nonferr. Met. Soc. China 29, 507 (2019). https://doi.org/10.1016/S1003-6326(19)64959-9

    Article  Google Scholar 

  11. DSC 404 F1 Pegasus. https://analyzing-testing.netzsch.com/en-US/products/differential-scanning-calorimeter-dsc-differential-thermal-analyzer-dta/dsc-404-f1-pegasus. Accessed 19 April 2023

  12. DIL 402 Expedis Classic. https://analyzing-testing.netzsch.com/ru/pribory-resheniya/dilatometriya-dil/dil-402-expedis-classic. Accessed 19 April 2023

  13. R.N. Abdullaev, Yu.M. Kozlovskii, R.A. Khairulin, S.V. Stankus, Int. J. Thermophys. 36, 603 (2015). https://doi.org/10.1007/s10765-015-1839-x

    Article  ADS  Google Scholar 

  14. Yu.M. Kozlovskii, S.V. Stankus, High Temp. 52, 536 (2014). https://doi.org/10.1134/S0018151X1403016X

    Article  Google Scholar 

  15. Hot Disk TPS 2500 S. https://www.hotdiskinstruments.com/products-services/instruments/tps-2500-s/. Accessed 19 April 2023

  16. S.E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991). https://doi.org/10.1063/1.1142087

    Article  ADS  Google Scholar 

  17. L.M. Heisig, R. Wulf, T.M. Fieback, Int. J. Thermophys. 44, 82 (2023). https://doi.org/10.1007/s10765-023-03190-6

    Article  ADS  Google Scholar 

  18. R.N. Abdullaev, R.A. Khairulin, Yu.M. Kozlovskii, S.V. Stankus, ASh. Agazhanov, Int. J. Thermophys. 44, 74 (2023). https://doi.org/10.1007/s10765-023-03187-1

    Article  ADS  Google Scholar 

  19. Springer Materials—Properties of Materials (Springer, 2023). https://materials.springer.com/. Accessed 19 April 2023

  20. S.V. Stankus, R.A. Khairulin, High Temp. 30, 386 (1992). https://www.mathnet.ru/eng/tvt3390. Accessed 19 April 2023

  21. A. Rudajevová, S. Kúdela, M. Staněk, P. Lukáč, Mater. Sci. Technol. 19, 1097 (2003). https://doi.org/10.1179/026708303225004648

    Article  ADS  Google Scholar 

  22. R.N. Abdullaev, D.A. Samoshkin, ASh. Agazhanov, S.V. Stankus, J. Eng. Thermophys. 30, 207 (2021). https://doi.org/10.1134/S1810232821020041

    Article  Google Scholar 

  23. C.Y. Ho, R.W. Powell, P.E. Liley, J. Phys. Chem. Ref. Data 3, 1 (1974)

    Article  Google Scholar 

  24. G.W. Stinton, S.G. MacLeod, H. Cynn, D. Errandonea, W.J. Evans, J.E. Proctor, Y. Meng, M.I. McMahon, Phys. Rev. B 90, 134105 (2014). https://doi.org/10.1103/PhysRevB.90.134105

    Article  ADS  Google Scholar 

  25. C.S. Barrett, Phys. Rev. 72, 245 (1947). https://doi.org/10.1103/PhysRev.72.245

    Article  ADS  Google Scholar 

  26. Y.S. Touloukian, R.W. Powell, C.Y. Ho, M.C. Nicolaou, Thermophysical Properties of Matter, vol. 10 (Plenum Press, New York, 1973)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant No. 20-79-10025). Link to the project information: https://rscf.ru/en/project/20-79-10025/.

Author information

Authors and Affiliations

Authors

Contributions

RNA, writing; YMK, dilatometric and hot-disk measurements; DAS, DSC and hot-disk measurements; SVS, supervision; AShA, samples preparation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Rasul N. Abdullaev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullaev, R.N., Kozlovskii, Y.M., Samoshkin, D.A. et al. Peculiarities of the Eutectic Mg–Li Alloy Thermal Expansion, Heat Capacity and Thermal Conductivity Behavior in the Temperature Range of 80 K to 293 K. Int J Thermophys 44, 104 (2023). https://doi.org/10.1007/s10765-023-03212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03212-3

Keywords

Navigation