Skip to main content
Log in

Nanoscale planar faulting in nanocrystalline Ni–W thin films: Grain growth, segregation, and residual stress

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pure Ni and Ni–W thin films with different W contents (<22 at.%) and a thickness of 500 nm have been produced by (co)sputtering. The phase composition, changes in residual stress, crystallite size, microstrain, and texture have been investigated employing in-situ x-ray diffraction measurements (25–550 °C) and ex-situ transmission electron microscopy analyses. For all compositions investigated, W dissolves substitutionally in Ni. The dissolution of W results in a highly columnar nanocrystalline microstructure with grain aspect ratios (height to width) exceeding 10. The Ni(W) solid solution exhibits a very high density of planar (twin and intrinsic stacking) faults oriented perpendicular to the growth direction. Whereas grain coarsening occurs for the nanocrystalline pure Ni thin films already upon heating to temperatures as low as about 125 °C, the microstructure of the nanocrystalline Ni–W thin films remains stable up to much higher temperatures, that is, even exceeding 350 °C. Above 350 °C, a W depletion of the Ni–W layer as a result of W segregation at planar faults occurs, which is accompanied by a change in lattice constant and in-plane stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Table II
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Table III
Table IV

Similar content being viewed by others

References

  1. R.W. Siegel: Nanostructured materials -mind over matter. Nanostruct. Mater. 3, 1 (1993).

    Article  CAS  Google Scholar 

  2. A.I. Gusev: The effects of the nanocrystalline state in solids. Usp. Fiziol. Nauk 168, 55 (1998).

    Article  CAS  Google Scholar 

  3. C.C. Koch, I.A. Ovid’ko, S. Seal, and S. Veprek: Structural Nanocrystalline Materials (Cambridge University Press, Cambridge, 2007).

    Book  Google Scholar 

  4. M.A. Meyers, A. Mishra, and D.J. Benson: The deformation physics of nanocrystalline metals: Experiments, analysis, and computations. JOM 58, 41 (2006).

    Article  CAS  Google Scholar 

  5. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  6. L. Lu, M.L. Sui, and K. Lu: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463 (2000).

    Article  CAS  Google Scholar 

  7. J.J. Croat, J.F. Herbst, R.W. Lee, and F.E. Pinkerton: Pr-Fe and Nd-Fe-based materials—A new class of high-performance permanent-magnets. J. Appl. Phys. 55, 2078 (1984).

    Article  CAS  Google Scholar 

  8. K.L. Ekinci and M.L. Roukes: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  CAS  Google Scholar 

  9. R. Birringer: Nanocrystalline materials. Mater. Sci. Eng., A 117, 33 (1989).

    Article  Google Scholar 

  10. K. Hansen and K. Pantleon: Microstructure stability of silver electrodeposits at room temperature. Scr. Mater. 58, 96 (2008).

    Article  CAS  Google Scholar 

  11. B. Günther, A. Kumpmann, and H.D. Kunze: Secondary recrystallization effects in nanostructured elemental metals. Scr. Metall. Mater. 27, 833 (1992).

    Article  Google Scholar 

  12. K. Pantleon and M.A.J Somers: In situ investigation of the microstructure evolution in nanocrystalline copper electrodeposits at room temperature. J. Appl. Phys. 100, 114319 (2006).

    Article  CAS  Google Scholar 

  13. E.J. Mittemeijer: Fundamentals of Materials Science (Springer Verlag, Heidelberg, 2010).

    Google Scholar 

  14. J. Weissmuller: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).

    Article  Google Scholar 

  15. R. Kirchheim: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002).

    Article  CAS  Google Scholar 

  16. C.C. Koch, R.O. Scattergood, K.A. Darling, and J.E. Semones: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43, 7264 (2008).

    Article  CAS  Google Scholar 

  17. A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, and D.T. Wu: Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 2143 (1999).

    Article  CAS  Google Scholar 

  18. L.S. Shvindlerman and G. Gottstein: Efficiency of drag mechanisms for inhibition of grain growth in nanocrystalline materials. Z. Metallk. 95, 239 (2004).

    Article  CAS  Google Scholar 

  19. F. Liu and R. Kirchheim: Comparison between kinetic and thermodynamic effects on grain growth. Thin Solid Films 466, 108 (2004).

    Article  CAS  Google Scholar 

  20. C. Bos, F. Sommer, and E.J. Mittemeijer: Atomistic study on the activation enthalpies for interface mobility and boundary diffusion in an interface-controlled phase transformation. Philos. Mag. 87, 2245 (2007).

    Article  CAS  Google Scholar 

  21. A.J. Detor and C.A. Schuh: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).

    Article  CAS  Google Scholar 

  22. A.J. Detor and C.A. Schuh: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).

    Article  CAS  Google Scholar 

  23. P. Choi, T. Al-Kassab, F. Gartner, H. Kreye, and R. Kirchheim: Thermal stability of nanocrystalline nickel-18 at.% tungsten alloy investigated with the tomographic atom probe. Mater. Sci. Eng., A 353, 74 (2003).

    Article  CAS  Google Scholar 

  24. A.J. Detor, M.K. Miller, and C.A. Schuh: Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006).

    Article  CAS  Google Scholar 

  25. S. Ruan and C.A. Schuh: Mesoscale structure and segregation in electrodeposited nanocrystalline alloys. Scr. Mater. 59, 1218 (2008).

    Article  CAS  Google Scholar 

  26. T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).

    Article  CAS  Google Scholar 

  27. C.A. Schuh, T.G. Nieh, and H. Iwasaki: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).

    Article  CAS  Google Scholar 

  28. C. Borgia, T. Scharowsky, A. Furrer, C. Solenthaler, and R. Spolenak: A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni-W alloy thin films. Acta Mater. 59, 386 (2011).

    Article  CAS  Google Scholar 

  29. M. Wohlschlogel, T.U. Schulli, B. Lantz, and U. Welzel: Application of a single-reflection collimating multilayer optic for X-ray diffraction experiments employing parallel-beam geometry. J. Appl. Cryst. 41, 124 (2008).

    Article  CAS  Google Scholar 

  30. M. Wohlschlögel, U. Welzel, G. Maier, and E.J. Mittemeijer: Calibration of a heating/cooling chamber for X-ray diffraction measurements of mechanical stress and crystallographic texture. J. Appl. Cryst. 39, 194 (2006).

    Article  CAS  Google Scholar 

  31. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer: Stress analysis of polycrystalline thin films and surface regions by x-ray diffraction. J. Appl. Cryst. 38, 1 (2005).

    Article  CAS  Google Scholar 

  32. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book (Elsevier, Amsterdam, 2004).

    Google Scholar 

  33. F. Bollenrath, V. Hauk, and E.H. Müller: On calculation of polycrystalline elasticity constants from single crystal data. Z. Metallkd. 58, 76 (1967).

    CAS  Google Scholar 

  34. T.H. de Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P Vogels: Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Cryst. 15, 308 (1982).

    Article  Google Scholar 

  35. E.J. Mittemeijer and U. Welzel: The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z. Kristallogr. 223, 552 (2008).

    Article  CAS  Google Scholar 

  36. A. Strecker, U. Bäder, M. Kelsch, U. Salzberger, M. Sycha, M. Gao, G. Richter, and K. van Bentem: Progress in the preparation of cross-sectional TEM specimens by ion-beam thinning. Z. Metallkd. 94, 290 (2003).

    Article  CAS  Google Scholar 

  37. S.V. Nagender Naidu, A.M. Sriramamurthy, and P. Rama Rao: Nb-W. Binary alloy phase diagrams. 2782–2783, 1988.

    Google Scholar 

  38. B. Okolo, P. Lamparter, U. Welzel, T. Wagner, and E.J. Mittemeijer: The effect of deposition parameters and substrate surface condition on texture, morphology and stress in magnetron-sputter-deposited Cu thin films. Thin Solid Films. 474, 50 (2005).

    Article  CAS  Google Scholar 

  39. L.T. Kong, J.B. Liu, W.S. Lal, and B.X. Liu: Correlation of lattice constant versus tungsten concentration of the Ni-based solid solution examined by molecular dynamics simulation. J. Alloy. Comp. 337, 143 (2002).

    Article  CAS  Google Scholar 

  40. L. Velterop, R. Delhez, T.H. de Keijser, E.J. Mittemeijer, and D. Reefman: X-ray diffraction analysis of stacking and twin faults in F.C.C. metals: A revision and allowance for texture and non-uniform fault probabilities. J. Appl. Cryst. 33, 296 (2000).

    Article  CAS  Google Scholar 

  41. M.J. Whelan and P.B. Hirsch: Electron diffraction from crystals containing stacking faults: II. Phil. Mag. 2, 13031957.

    Article  CAS  Google Scholar 

  42. M.M.J Treacy, J.M. Newsam, and M.W. Deem: A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. London, Ser. A 433, 499 (1991).

    Article  Google Scholar 

  43. C. Rhodes and A. Thompson: The composition dependence of stacking fault energy in austenitic stainless steels. Metall. Mater. Trans. A 8, 1901 (1977).

    Article  Google Scholar 

  44. X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84, 1096 (2004).

    Article  CAS  Google Scholar 

  45. X. Zhang, H. Wang, X.H. Chen, L. Lu, K. Lu, R.G. Hoagland, and A. Misra: High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88, 173116 (2006).

    Article  CAS  Google Scholar 

  46. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley, and X. Zhang: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008).

    Article  CAS  Google Scholar 

  47. X. Zhang, O. Anderoglu, R.G. Hoagland, and A. Misra: Nanoscale growth twins in sputtered metal films. JOM. 60, 75 (2008).

    Article  CAS  Google Scholar 

  48. D.J. Siegel: Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Appl. Phys. Lett. 87, 121901 (2005).

    Article  CAS  Google Scholar 

  49. S.D. Dahlgren, W.L. Nicholson, M.D. Merz, W. Bollmann, J.F. Devlin, and D.R. Wang: Microstructural analysis and tensile properties of thick copper and nickel sputter deposits. Thin Solid Films 40, 345 (1977).

    Article  CAS  Google Scholar 

  50. S. Kurz, U. Welzel, and E.J. Mittemeijer. in preparation, 2011.

  51. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A: Phys. Metall. Mater. Sci. 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  52. J. Chakraborty, U. Welzel, and E.J. Mittemeijer: Interdiffusion, phase formation and stress development in Cu-Pd thin-film diffusion couples: Interface thermodynamics and mechanisms. J. Appl. Phys. 103, 113512 (2008).

    Article  CAS  Google Scholar 

  53. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and P.D. Desai: Thermal Expansion, Metallic Elements and Alloys, Vol. 12 (IFI/Plenum, New York, 1975).

  54. M. Ohring: The Materials Science of Thin Films (Academic Press, San Diego, 2002).

    Google Scholar 

  55. Y. Kuru, M. Wohlschlogel, U. Welzel, and E.J. Mittemeijer: Large excess volume in grain boundaries of stressed, nanocrystalline metallic thin films: Its effect on grain-growth kinetics. Appl. Phys. Lett. 95, 163112 (2009).

    Article  CAS  Google Scholar 

  56. C.V. Thompson: Grain-growth in thin-films. Annu. Rev. Mater. Sci. 20, 245 (1990).

    Article  CAS  Google Scholar 

  57. P. Guiraldenq: Mateaux. Corros. Inds. 39, 347 (1964).

    CAS  Google Scholar 

  58. J. Chakraborty, U. Welzel, and E.J. Mittemeijer: Mechanisms of interdiffusion in Pd-Cu thin film diffusion couples. Thin Solid Films 518, 2010 (2010).

    Article  CAS  Google Scholar 

  59. H. Suzuki: Segregation of solute atoms to stacking faults. J. Phys. Soc. Jpn. 17, 3221962.

    Article  CAS  Google Scholar 

  60. R. Herschitz and D.N. Seidman: Atomic resolution observations of solute atom segregation to stacking faults in a Co-0.96 at-percent Nb alloy. Scr. Metall. 16, 849 (1982).

    Article  CAS  Google Scholar 

  61. B.G. Mendis, I.P. Jones, and R.E. Smallman: Suzuki segregation in a binary Cu-Si alloy. J. Electron Microsc. 53, 311 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. G. Richter and Mr. F. Thiele (Max Planck Institute for Intelligent Systems, Central Scientific Facility “Thin Film Laboratory”) for the sputter deposition of the layers and Dr. Markus Wohlschlogel (now at Admedes Schiissler GmbH, Pforzheim, Germany) for contributions during initial stages of the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Welzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welzel, U., Kümmel, J., Bischoff, E. et al. Nanoscale planar faulting in nanocrystalline Ni–W thin films: Grain growth, segregation, and residual stress. Journal of Materials Research 26, 2558–2573 (2011). https://doi.org/10.1557/jmr.2011.238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.238

Navigation