Skip to main content
Log in

Doping of semiconductor nanowires

  • Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A cornerstone in the successful application of semiconductor nanowire devices is controlled impurity doping. In this review article, we discuss the key results in the field of semiconductor nanowire doping. Considerable development has recently taken place in this field, and half of the references in this review are less than 3 years old. We present a simple model for dopant incorporation during in situ doping of particle-assisted growth of nanowires. The effects of doping on nanowire growth are thoroughly discussed since many investigators have seen much stronger and more complex effects than those observed in thin-film growth. We also give an overview of methods of characterizing doping in nanowires since these in many ways define the boundaries of our current understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. T. Mårtensson, C.P.T Svensson, B.A. Wacaser, M.W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L.R. Wallenberg, and L. Samuelson: Epitaxial III-V nanowires on silicon. Nano Lett. 4, 1987 (2004).

    Article  CAS  Google Scholar 

  2. E.P.A.M Bakkers, M.T. Borgström, and M.A. Verheijen: Epitaxial growth of III-V nanowires on group IV substrates. MRS Bull. 32, 117 (2007).

    Article  CAS  Google Scholar 

  3. Y. Cui and C.M. Lieber: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851 (2001).

    Article  CAS  Google Scholar 

  4. C. Thelander, T. Mårtensson, M.T. Björk, B.J. Ohlsson, M.W. Larsson, L.R. Wallenberg, and L. Samuelson: Single-electron transistors in heterostructure nanowires. Appl. Phys. Lett. 83, 2052 (2003).

    Article  CAS  Google Scholar 

  5. S. Nadj-Perge, S.M. Frolov, E.P. Bakkers, and L.P. Kouwenhoven: Spin-orbit qubit in a semiconductor nanowire. Nature 468, 1084 (2010).

    Article  CAS  Google Scholar 

  6. K. Haraguchi, T. Katsuyama, K. Hiruma, and K. Ogawa: GaAs p-n junction formed in quantum wire crystals. Appl. Phys. Lett. 60, 745 (1992).

    Article  CAS  Google Scholar 

  7. Y. Cui, X.F. Duan, J.T. Hu, and C.M. Lieber: Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 5213 (2000).

    Article  CAS  Google Scholar 

  8. T.J. Kempa, B.Z. Tian, D.R. Kim, J.S. Hu, X.L. Zheng, and C.M. Lieber: Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456 (2008).

    Article  CAS  Google Scholar 

  9. E.D. Minot, F. Kelkensberg, M. van Kouwen, J.A. van Dam, L.P. Kouwenhoven, V. Zwiller, M.T. Borgström, O. Wunnicke, M.A. Verheijen, and E.P.A.M Bakkers: Single quantum dot nanowire LEDs. Nano Lett. 7, 367 (2007).

    Article  CAS  Google Scholar 

  10. M.T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess: Silicon nanowire tunneling field-effect transistors. Appl. Phys. Lett. 92, 193504 (2008).

    Article  CAS  Google Scholar 

  11. G.B. Stringfellow: The role of impurities in III/V semiconductors grown by organometallic vapor-phase epitaxy. J. Cryst. Growth 75, 91 (1986).

    Article  CAS  Google Scholar 

  12. P. Caroff, J. Bolinsson, and J. Johansson: Crystal phases in III–V nanowires: From random toward engineered polytypism. IEEE J. Sel. Top. Quant. Electron. PP, 18 (2010).

    Google Scholar 

  13. L.A. Xu, Y. Su, Y.Q. Chen, H.H. Xiao, L.A. Zhu, Q.T. Zhou, and S. Li: Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures. J. Phys. Chem. B 110, 6637 (2006).

    Article  CAS  Google Scholar 

  14. R.E. Algra, M.A. Verheijen, M.T. Borgström, L.F. Feiner, G. Immink, W.J.P. van Enckevort, E. Vlieg, and E.P.A.M Bakkers: Twinning superlattices in indium phosphide nanowires. Nature 456, 369 (2008).

    Article  CAS  Google Scholar 

  15. N. Seoane, A. Martinez, A.R. Brown, J.R. Barker, and A. Asenov: Current variability in Si nanowire MOSFETs due to random dopants in the source/drain regions: A fully 3-D NEGF simulation study. IEEE Trans. Electron. Dev. 56, 1388 (2009).

    Article  CAS  Google Scholar 

  16. G.F. Zheng, W. Lu, S. Jin, and C.M. Lieber: Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 16, 1890 (2004).

    Article  CAS  Google Scholar 

  17. B.S. Kim, T.W. Koo, J.H. Lee, D.S. Kim, Y.C. Jung, S.W. Hwang, B.L. Choi, E.K. Lee, J.M. Kim, and D. Whang: Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett. 9, 864 (2009).

    Article  CAS  Google Scholar 

  18. H. Schmid, M.T. Björk, J. Knoch, H. Riel, W. Riess, P. Rice, and T. Topuria: Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane. J. Appl. Phys. 103, 024304 (2008).

    Article  CAS  Google Scholar 

  19. F. Li, P.D. Nellist, and D.J.H Cockayne: Doping-dependent nanofaceting on silicon nanowire surfaces. Appl. Phys. Lett. 94, 263111 (2009).

    Article  CAS  Google Scholar 

  20. H. Schmid, M.T. Björk, J. Knoch, S. Karg, H. Riel, and W. Riess: Doping limits of grown in situ doped silicon nanowires using phosphine. Nano Lett. 9, 173 (2009).

    Article  CAS  Google Scholar 

  21. D.E. Perea, E.R. Hemesath, E.J. Schwalbach, J.L. Lensch-Falk, P.W. Voorhees, and L.J. Lauhon: Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. Nat. Nanotechnol. 4, 315 (2009).

    Article  CAS  Google Scholar 

  22. Y.F. Wang, K.K. Lew, T.T. Ho, L. Pan, S.W. Novak, E.C. Dickey, J.M. Redwing, and T.S. Mayer: Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano Lett. 5, 2139 (2005).

    Article  CAS  Google Scholar 

  23. E. Koren, Y. Rosenwaks, J.E. Allen, E.R. Hemesath, and L.J. Lauhon: Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy. Appl. Phys. Lett. 95, 092105 (2009).

    Article  CAS  Google Scholar 

  24. C. Celle, C. Mouchet, E. Rouviere, J.P. Simonato, D. Mariolle, N. Chevalier, and A. Brioude: Controlled in situ n-doping of silicon nanowires during VLS growth and their characterization by scanning spreading resistance microscopy. J. Phys. Chem. C 114, 760 (2010).

    Article  CAS  Google Scholar 

  25. P. Nimmatoori, Q. Zhang, E.C. Dickey, and J.M. Redwing: Suppression of the vapor-liquid-solid growth of silicon nanowires by antimony addition. Nanotechnology 20, 025607 (2009).

    Article  CAS  Google Scholar 

  26. G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi: Distribution of active impurities in single silicon nanowires. Nano Lett. 8, 2620 (2008).

    Article  CAS  Google Scholar 

  27. L.J. Lauhon, M.S. Gudiksen, C.L. Wang, and C.M. Lieber: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 (2002).

    Article  CAS  Google Scholar 

  28. K.K. Lew, L. Pan, T.E. Bogart, S.M. Dilts, E.C. Dickey, J.M. Redwing, Y.F. Wang, M. Cabassi, T.S. Mayer, and S.W. Novak: Structural and electrical properties of trimethylboron-doped silicon nanowires. Appl. Phys. Lett. 85, 3101 (2004).

    Article  CAS  Google Scholar 

  29. E.I. Givargizov: Periodic instability in whisker growth. J. Cryst. Growth 20, 217 (1973).

    Article  CAS  Google Scholar 

  30. B.A. Wacaser, M.C. Reuter, M.M. Khayyat, C.Y. Wen, R. Haight, S. Guha, and F.M. Ross: Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett. 9, 3296 (2009).

    Article  CAS  Google Scholar 

  31. W.F. Lee, C.Y. Lee, M.L. Ho, C.T. Huang, C.H. Lai, H.Y. Hsieh, P.T. Chou, and L.J. Chen: Nd-doped silicon nanowires with room temperature ferromagnetism and infrared photoemission. Appl. Phys. Lett. 94, 263117 (2009).

    Article  CAS  Google Scholar 

  32. S. Kodambaka, J.B. Hannon, R.M. Tromp, and F.M. Ross: Control of Si nanowire growth by oxygen. Nano Lett. 6, 1292 (2006).

    Article  CAS  Google Scholar 

  33. A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, and C.M. Lieber: Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176 (2004).

    Article  CAS  Google Scholar 

  34. E. Tutuc, J. Appenzeller, M.C. Reuter, and S. Guha: Realization of a linear germanium nanowire p-n junction. Nano Lett. 6, 2070 (2006).

    Article  CAS  Google Scholar 

  35. S.T. Le, P. Jannaty, A. Zaslavsky, S.A. Dayeh, and S.T. Picraux: Growth, electrical rectification, and gate control in axial in situ doped p-n junction germanium nanowires. Appl. Phys. Lett. 96, 262102 (2010).

    Article  CAS  Google Scholar 

  36. D. Wang and H. Dai: Germanium nanowires: From synthesis, surface chemistry, and assembly to devices. Appl. Phys. A 85, 217 (2006).

    Article  CAS  Google Scholar 

  37. E. Tutuc, J.O. Chu, J.A. Ott, and S. Guha: Doping of germanium nanowires grown in presence of PH3. Appl. Phys. Lett. 89, 263101 (2006).

    Article  CAS  Google Scholar 

  38. E. Sutter and P. Sutter: Vapor-liquid-solid growth and Sb doping of Ge nanowires from a liquid Au-Sb-Ge ternary alloy. Appl. Phys. A 99, 217 (2010).

    Article  CAS  Google Scholar 

  39. D.W. Wang, Q. Wang, A. Javey, R. Tu, H.J. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, and K.C. Saraswat: Germanium nanowire field-effect transistors with SiO2 and high-kappa HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432 (2003).

    Article  CAS  Google Scholar 

  40. E. Tutuc, S. Guha, and J.O. Chu: Morphology of germanium nanowires grown in presence of B2H6. Appl. Phys. Lett. 88, 043113 (2006).

    Article  CAS  Google Scholar 

  41. V. Grossi, F. Bussolotti, M. Passacantando, S. Santucci, and L. Ottaviano: Mn doping of germanium nanowires by vapour-liquid-solid deposition. Superlattices Microstruct. 44, 489 (2008).

    Article  CAS  Google Scholar 

  42. H.J. Choi, H.K. Seong, J.C. Lee, and Y.M. Sung: Growth and modulation of silicon carbide nanowires. J. Cryst. Growth 269, 472 (2004).

    Article  CAS  Google Scholar 

  43. Y. Yang, Q. Zhao, X.Z. Zhang, Z.G. Liu, C.X. Zou, B. Shen, and D.P. Yu: Mn-doped AIN nanowires with room temperature ferromagnetic ordering. Appl. Phys. Lett. 90, 092118 (2007).

    Article  CAS  Google Scholar 

  44. J. Liu, X.M. Meng, Y. Jiang, C.S. Lee, I. Bello, and S.T. Lee: Gallium nitride nanowires doped with silicon. Appl. Phys. Lett. 83, 4241 (2003).

    Article  CAS  Google Scholar 

  45. M.S. Son, S.I. Im, Y.S. Park, C.M. Park, T.W. Kang, and K.H. Yoo: Ultraviolet photodetector basedon single GaN nanorod p-n junctions. Mater. Sci. Eng., C 26, 886 (2006).

    Article  CAS  Google Scholar 

  46. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya: Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett. 10, 3355 (2010).

    Article  CAS  Google Scholar 

  47. F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B.K. Meyer, and M. Eickhoff: Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 104, 074309 (2008).

    Article  CAS  Google Scholar 

  48. F. Qian, Y. Li, S. Gradecak, D.L. Wang, C.J. Barrelet, and C.M. Lieber: Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975 (2004).

    Article  CAS  Google Scholar 

  49. Z.H. Zhong, F. Qian, D.L. Wang, and C.M. Lieber: Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343 (2003).

    Article  CAS  Google Scholar 

  50. G.S. Cheng, A. Kolmakov, Y.X. Zhang, M. Moskovits, R. Munden, M.A. Reed, G.M. Wang, D. Moses, and J.P. Zhang: Current rectification in a single GaN nanowire with a well-defined p-n junction. Appl. Phys. Lett. 83, 1578 (2003).

    Article  CAS  Google Scholar 

  51. F. Limbach, E.O. Schafer-Nolte, R. Caterino, T. Gotschke, T. Stoica, E. Sutter, and R. Calarco: Morphology and optical properties of Mg doped GaN nanowires in dependence of growth temperature. J. Optoelectron. Adv. Mater. 12, 1433 (2010).

    CAS  Google Scholar 

  52. Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, and S.T. Lee: Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett. 8, 4191 (2008).

    Article  CAS  Google Scholar 

  53. S.M. Zhou: Near UV photoluminescence of Hg-doped GaN nanowires. Physica E 33, 394 (2006).

    Article  CAS  Google Scholar 

  54. D.S. Han, J. Park, K.W. Rhie, S. Kim, and J. Chang: Ferromagnetic Mn-doped GaN nanowires. Appl. Phys. Lett. 86, 032506 (2005).

    Article  CAS  Google Scholar 

  55. P.V. Radovanovic, K.G. Stamplecoskie, and B.G. Pautler: Dopant ion concentration dependence of growth and faceting of manganese-doped GaN nanowires. J. Am. Chem. Soc. 129, 10980 (2007).

    Article  CAS  Google Scholar 

  56. Z.G. Chen, L.N. Cheng, G.Q. Lu, and J. Zou: Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. Nanotechnology 21, 375701 (2010).

    Article  CAS  Google Scholar 

  57. H.W. Seo, S.Y. Bae, J. Park, M.I. Kang, and S. Kim: Nitrogen-doped gallium phosphide nanowires. Chem. Phys. Lett. 378, 420 (2003).

    Article  CAS  Google Scholar 

  58. D.S. Han, S.Y. Bae, H.W. Seo, Y.J. Kang, J. Park, G. Lee, J.P. Ahn, S. Kim, and J. Chang: Synthesis and magnetic properties of manganese-doped GaP nanowires. J. Phys. Chem. B. 109, 9311 (2005).

    Article  CAS  Google Scholar 

  59. H.G. Lee, H.C. Jeon, T.W. Kang, and T.W. Kim: Gallium arsenide crystalline nanorods grown by molecular-beam epitaxy. Appl. Phys. Lett. 78, 3319 (2001).

    Article  CAS  Google Scholar 

  60. M. Hilse, M. Ramsteiner, S. Breuer, L. Geelhaar, and H. Riechert: Incorporation of the dopants Si and Be into GaAs nanowires. Appl. Phys. Lett. 96, 193104 (2010).

    Article  CAS  Google Scholar 

  61. C. Colombo, M. Heibeta, M. Gratzel, and A. Fontcuberta i Morral: Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94, 173108 (2009).

    Article  CAS  Google Scholar 

  62. K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui: GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10, 1639 (2010).

    Article  CAS  Google Scholar 

  63. K. Sladek, V. Klinger, J. Wensorra, M. Akabori, H. Hardtdegen, and D. Grutzmacher: MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires. J. Cryst. Growth 312, 635 (2010).

    Article  CAS  Google Scholar 

  64. J.A. Czaban, D.A. Thompson, and R.R. LaPierre: GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 9, 148 (2009).

    Article  CAS  Google Scholar 

  65. J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D.A. Thompson, and R.R. LaPierre: Electrical characteristics of core-shell p-n GaAs nanowire structures with Te as the n-dopant. Nanotechnology 21, 134007 (2010).

    Article  CAS  Google Scholar 

  66. J. Dufouleur, C. Colombo, T. Garma, B. Ketterer, E. Uccelli, M. Nicotra, and A.F.I Morral: P-doping mechanisms in catalyst-free gallium arsenide nanowires. Nano Lett. 10, 1734 (2010).

    Article  CAS  Google Scholar 

  67. B. Ketterer, E. Mikheev, E. Uccelli, and Fontcuberta i Morral A.: Compensation mechanism in silicon-doped gallium arsenide nanowires. Appl. Phys. Lett. 97, 223103 (2010).

    Article  CAS  Google Scholar 

  68. C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, and F.J. Tegude: Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth. J. Appl. Phys. 105, 024305 (2009).

    Article  CAS  Google Scholar 

  69. J. Wallentin, J.M. Persson, J.B. Wagner, L. Samuelson, K. Deppert, and M.T. Borgström: High-performance single nanowire tunnel diodes. Nano Lett. 10, 974 (2010).

    Article  CAS  Google Scholar 

  70. F. Martelli, S. Rubini, M. Piccin, G. Bais, F. Jabeen, S. De Franceschi, V. Grillo, E. Carlino, F. D’Acapito, F. Boscherini, S. Cabrini, M. Lazzarino, L. Businaro, F. Romanato, and A. Franciosi: Manganese-induced growth of GaAs nanowires. Nano Lett. 6, 2130 (2006).

    Article  CAS  Google Scholar 

  71. T. Richter, H. Luth, T. Schapers, R. Meijers, K. Jeganathan, S.E. Hernandez, R. Calarco, and M. Marso: Electrical transport properties of single undoped and n-type doped InN nanowires. Nanotechnology 20, 405206 (2009).

    Article  CAS  Google Scholar 

  72. R. Cusco, N. Domenech-Amador, L. Artus, T. Gotschke, K. Jeganathan, T. Stoica, and R. Calarco: Probing the electron density in undoped, Si-doped, and Mg-doped InN nanowires by means of Raman scattering. Appl. Phys. Lett. 97, 221906 (2010).

    Article  CAS  Google Scholar 

  73. H.P. Song, A.L. Yang, R.Q. Zhang, Y. Guo, H.Y. Wei, G.L. Zheng, S.Y. Yang, X.L. Liu, Q.S. Zhu, and Z.G. Wang: Well-aligned Zn-doped InN nanorods grown by metal-organic chemical vapor deposition and the dopant distribution. Cryst. Growth Des. 9, 3292 (2009).

    Article  CAS  Google Scholar 

  74. L. Rigutti, A.D. Bugallo, M. Tchernycheva, G. Jacopin, F.H. Julien, G. Cirlin, G. Patriarche, D. Lucot, L. Travers, and J.C. Harmand: Si incorporation in InP nanowires grown by Au-assisted molecular beam epitaxy. J. Nanomater. 2009, 435451 (2009).

    Article  CAS  Google Scholar 

  75. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui: growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express 2, 035004 (2009).

    Article  CAS  Google Scholar 

  76. X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, and C.M. Lieber: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).

    Article  CAS  Google Scholar 

  77. M.T. Borgström, E. Norberg, P. Wickert, H.A. Nilsson, J. Trägårdh, K.A. Dick, G. Statkute, P. Ramvall, K. Deppert, and L. Samuelson: Precursor evaluation for in situ InP nanowire doping. Nanotechnology 19, 445602 (2008).

    Article  CAS  Google Scholar 

  78. M.H.M. van Weert, A. Helman, W. van den Einden, R.E. Algra, M.A. Verheijen, M.T. Borgström, G. Immink, J.J. Kelly, L.P. Kouwenhoven, and E.P.A.M Bakkers: Zinc incorporation via the vapor-liquid-solid mechanism into InP nanowires. J. Am. Chem. Soc. 131, 4578 (2009).

    Article  CAS  Google Scholar 

  79. J. Wallentin, K. Mergenthaler, M. Ek, L.R. Wallenberg, L. Samuelson, K. Deppert, M.-E. Pistol, and M.T. Borgström: Probing the wurtzite conduction band structure using state-filling in highly doped InP nanowires. Nano Lett. 11, 2286 (2011).

    Article  CAS  Google Scholar 

  80. S. De Franceschi, J.A. van Dam, E. Bakkers, L.F. Feiner, L. Gurevich, and L.P. Kouwenhoven: Single-electron tunneling in InP nanowires. Appl. Phys. Lett. 83, 344 (2003).

    Article  CAS  Google Scholar 

  81. C. Liu, L. Dai, L.P. You, W.J. Xu, and G.G. Qin: Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein–Moss effect. Nanotechnology 19, 465203 (2008).

    Article  CAS  Google Scholar 

  82. M.H.M. van Weert, O. Wunnicke, A.L. Roest, T.J. Eijkemans, A. Yu Silov, and J.E.M Haverkort, G.W. ’t Hooft, E.P.A.M Bakkers: Large redshift in photoluminescence of p-doped InP nanowires induced by Fermi-level pinning. Appl. Phys. Lett. 88, 043109 (2006).

    Article  CAS  Google Scholar 

  83. J. Wallentin, M. Ek, L.R. Wallenberg, L. Samuelson, K. Deppert, and M.T. Borgström: Changes in contact angle of seed particle correlated with increased zincblende formation in doped InP nanowires. Nano Lett. 10, 4807 (2010).

    Article  CAS  Google Scholar 

  84. M.T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M.H. Magnusson, K. Deppert, and L. Samuelson: Nanowires With Promise for Photovoltaics. IEEE Journal of Selected Topics in Quantum Electronics 17, 1050 (2011).

    Article  CAS  Google Scholar 

  85. C. Thelander, K.A. Dick, M.T. Borgström, L.E. Fröberg, P. Caroff, H.A. Nilsson, and L. Samuelson: The electrical and structural properties of n-type InAs nanowires grown from metal-organic precursors. Nanotechnology 21, 205703 (2010).

    Article  CAS  Google Scholar 

  86. B.S. Sorensen, M. Aagesen, C.B. Sorensen, P.E. Lindelof, K.L. Martinez, and J. Nygard: Ambipolar transistor behavior in p-doped InAs nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 92, 012119 (2008).

    Article  CAS  Google Scholar 

  87. B.Y. Geng, G.Z. Wang, Z. Jiang, T. Xie, S.H. Sun, G.W. Meng, and L.D. Zhang: Synthesis and optical properties of S-doped ZnO nanowires. Appl. Phys. Lett. 82, 4791 (2003).

    Article  CAS  Google Scholar 

  88. S.Y. Bae, H.W. Seo, and J.H. Park: Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J. Phys. Chem. B 108, 5206 (2004).

    Article  CAS  Google Scholar 

  89. S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, and C.J. Huang: Effect of Sn dopant on the properties of ZnO nanowires. J. Phys. D 37, 2274 (2004).

    Article  CAS  Google Scholar 

  90. J.Y. Gao, X.Z. Zhang, Y.H. Sun, Q. Zhao, and D.P. Yu: Compensation mechanism in N-doped ZnO nanowires. Nanotechnology 21, 245703 (2010).

    Article  CAS  Google Scholar 

  91. G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.X. Tang, I. Shafiq, Z.Z. Ye, C.S. Lee, and S.T. Lee: Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Adv. Mater. 20, 168 (2008).

    Article  CAS  Google Scholar 

  92. C.H. Liu, W.C. Yiu, F.C.K Au, J.X. Ding, C.S. Lee, and S.T. Lee: Electrical properties of zinc oxide nanowires and intramolecular p-n junctions. Appl. Phys. Lett. 83, 3168 (2003).

    Article  CAS  Google Scholar 

  93. B. Xiang, P.W. Wang, X.Z. Zhang, S.A. Dayeh, D.P.R Aplin, C. Soci, D.P. Yu, and D.L. Wang: Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 7, 323 (2007).

    Article  CAS  Google Scholar 

  94. P.J. Li, Z.M. Liao, X.Z. Zhang, X.J. Zhang, H.C. Zhu, J.Y. Gao, K. Laurent, Y. Leprince-Wang, N. Wang, and D.P. Yu: Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires. Nano Lett. 9, 2513 (2009).

    Article  CAS  Google Scholar 

  95. G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.A. Zapien, Y.H. Leung, L.B. Luo, P.F. Wang, C.S. Lee, and S.T. Lee: P-type ZnO nanowire arrays. Nano Lett. 8, 2591 (2008).

    Article  CAS  Google Scholar 

  96. W. Liu, F.X. Xiu, K. Sun, Y.H. Xie, K.L. Wang, Y. Wang, J. Zou, Z. Yang, and J.L. Liu: Na-doped p-type ZnO microwires. J. Am. Chem. Soc. 132, 2498 (2010).

    Article  CAS  Google Scholar 

  97. Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, and D.P. Yu: Synthesis, optical, and magnetic properties of diluted magnetic semiconductor Zn1-x MnxO nanowires via vapor phase growth. Appl. Phys. Lett. 83, 4020 (2003).

    Article  CAS  Google Scholar 

  98. J.J. Liu, M.H. Yu, and W.L. Zhou: Well-aligned Mn-doped ZnO nanowires synthesized by a chemical-vapor-deposition method. Appl. Phys. Lett. 87, 172505 (2005).

    Article  CAS  Google Scholar 

  99. P.V. Radovanovic, C.J. Barrelet, S. Gradecak, F. Qian, and C.M. Lieber: General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. Nano Lett. 5, 1407 (2005).

    Article  CAS  Google Scholar 

  100. M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Z. Perez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A.C. Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H.S. Kwack, J. Guinard, and D.L. Dang: Zinc oxide nanorod based photonic devices: Recent progress in growth, light emitting diodes and lasers. Nanotechnology 20, 332001 (2009).

    Article  CAS  Google Scholar 

  101. Z.Y. Fan and J.G. Lu: Zinc oxide nanostructures: Synthesis and properties. J. Nanosci. Nanotechnol 5, 1561 (2005).

    Article  CAS  Google Scholar 

  102. Y.Q. Chen, J. Jiang, B. Wang, and J.G. Hou: Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth. J. Phys. D: Appl. Phys. 37, 3319 (2004).

    Article  CAS  Google Scholar 

  103. Q. Wan, Z.T. Song, S.L. Feng, and T.H. Wang: Single-crystalline tin-doped indium oxide whiskers: Synthesis and characterization. Appl. Phys. Lett. 85, 4759 (2004).

    Article  CAS  Google Scholar 

  104. Q. Wan, E.N. Dattoli, W.Y. Fung, W. Guo, Y.B. Chen, X.Q. Pan, and W. Lu: High-performance transparent conducting oxide nanowires. Nano Lett. 6, 2909 (2006).

    Article  CAS  Google Scholar 

  105. P. Nguyen, H.T. Ng, J. Kong, A.M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, and M. Meyyappan: Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Lett. 3, 925 (2003).

    Article  CAS  Google Scholar 

  106. Q. Wan, E.N. Dattoli, and W. Lu: Transparent metallic Sb-doped SnO2 nanowires. Appl. Phys. Lett. 90, 222107 (2007).

    Article  CAS  Google Scholar 

  107. A. Klamchuen, T. Yanagida, K. Nagashima, S. Seki, K. Oka, M. Taniguchi, and T. Kawai: Crucial role of doping dynamics on transport properties of Sb-doped SnO2 nanowires. Appl. Phys. Lett. 95, 053105 (2009).

    Article  CAS  Google Scholar 

  108. J.S. Jie, W.J. Zhang, I. Bello, C.S. Lee, and S.T. Lee: One-dimensional II-VI nanostructures: Synthesis, properties and optoelectronic applications. Nano Today 5, 313 (2010).

    Article  CAS  Google Scholar 

  109. B.A. Wacaser, K.A. Dick, J. Johansson, M.T. Borgström, K. Deppert, and L. Samuelson: Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv. Mater. 21, 153 (2009).

    Article  CAS  Google Scholar 

  110. K.A. Dick: A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires. Prog. Cryst. Growth Charact. Mater. 54, 138 (2008).

    Article  CAS  Google Scholar 

  111. J.E. Allen, D.E. Perea, E.R. Hemesath, and L.J. Lauhon: Nonuniform nanowire doping profiles revealed by quantitative scanning photocurrent microscopy. Adv. Mater. 21, 3067 (2009).

    Article  CAS  Google Scholar 

  112. M.A. Verheijen, G. Immink, T. de Smet, M.T. Borgström, and E.P.A.M Bakkers: Growth kinetics of heterostructured GaP–GaAs nanowires. J. Am. Chem. Soc. 128, 1353 (2006).

    Article  CAS  Google Scholar 

  113. M.T. Borgström, J. Wallentin, J. Trägårdh, P. Ramvall, M. Ek, L.R. Wallenberg, L. Samuelson, and K. Deppert: In situ etching for total control over axial and radial nanowire growth. Nano Research 3, 264 (2010).

    Article  CAS  Google Scholar 

  114. E. Kuphal: Preparation and characterization of LPE InP. J. Cryst. Growth 54, 117 (1981).

    Article  CAS  Google Scholar 

  115. R.A. Logan, T. Tanbunek, and A.M. Sergent: Doping of InP and GaInAs with S during metalorganic vapor phase epitaxy. J. Appl. Phys. 65, 3723 (1989).

    Article  CAS  Google Scholar 

  116. N. Li, T.Y. Tan, and U. Gösele: Transition region width of nanowire hetero- and pn-junctions grown using vapor–liquid–solid processes. Appl. Phys. A 90, 591 (2008).

    Article  CAS  Google Scholar 

  117. M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, and L. Samuelson: One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058 (2002).

    Article  CAS  Google Scholar 

  118. M.T. Borgström, M.A. Verheijen, G. Immink, T. de Smet, and E.P.A.M Bakkers: Interface study on heterostructured GaP–GaAs nanowires. Nanotechnology 17, 4010 (2006).

    Article  CAS  Google Scholar 

  119. L.E. Fröberg, B.A. Wacaser, J.B. Wagner, S. Jeppesen, B.J. Ohlsson, K. Deppert, and L. Samuelson: Transients in the formation of nanowire heterostructures. Nano Lett. 8, 3815 (2008).

    Article  CAS  Google Scholar 

  120. C.Y. Wen, M.C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E.A. Stach, and F.M. Ross: Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 326, 1247 (2009).

    Article  CAS  Google Scholar 

  121. F. Glas, J.C. Harmand, and G. Patriarche: Nucleation antibunching in catalyst-assisted nanowire growth. Phys. Rev. Lett. 104, 135501 (2010).

    Article  CAS  Google Scholar 

  122. H. Peelaers, B. Partoens, and F.M. Peeters: Formation and segregation energies of B and P doped and BP codoped silicon nanowires. Nano Lett. 6, 2781 (2006).

    Article  CAS  Google Scholar 

  123. M.V. Fernandez-Serra, C. Adessi, and X. Blase: Surface segregation and backscattering in doped silicon nanowires. Phys. Rev. Lett. 96, 166805 (2006).

    Article  CAS  Google Scholar 

  124. P. Xie, Y.J. Hu, Y. Fang, J.L. Huang, and C.M. Lieber: Diameter-dependent dopant location in silicon and germanium nanowires. Proc. Natl. Acad. Sci. USA 106, 15254 (2009).

    Article  CAS  Google Scholar 

  125. J. Johansson, L.S. Karlsson, C.P.T Svensson, T. Mårtensson, B.A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert: Structural properties of (111)B-oriented III-V nanowires. Nat. Mater. 5, 574 (2006).

    Article  CAS  Google Scholar 

  126. S. Chichibu, M. Kushibe, K. Eguchi, M. Funemizu, and Y. Ohba: High-concentration Zn doping in Inp grown by low-pressure metalorganic chemical vapor-deposition. J. Appl. Phys. 68, 859 (1990).

    Article  CAS  Google Scholar 

  127. M. Diarra, Y.M. Niquet, C. Delerue, and G. Allan: Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement. Phys. Rev. B 75, 045301 (2007).

    Article  CAS  Google Scholar 

  128. M.T. Björk, H. Schmid, J. Knoch, H. Riel, and W. Riess: Donor deactivation in silicon nanostructures. Nat. Nanotechnol. 4, 103 (2009).

    Article  CAS  Google Scholar 

  129. K.H. Hong, J. Kim, J.H. Lee, J. Shin, and U.I. Chung: Asymmetric doping in silicon nanostructures: the impact of surface dangling bonds. Nano Lett. 10, 1671 (2010).

    Article  CAS  Google Scholar 

  130. J. Arbiol, S. Estrade, J.D. Prades, A. Cirera, F. Furtmayr, C. Stark, A. Laufer, M. Stutzmann, M. Eickhoff, M.H. Gass, A.L. Bleloch, F. Peiro, and J.R. Morante: Triple-twin domains in Mg doped GaN wurtzite nanowires: Structural and electronic properties of this zinc-blende-like stacking. Nanotechnology 20, 145704 (2009).

    Article  CAS  Google Scholar 

  131. B.D. Liu, Y. Bando, C.C. Tang, F.F. Xu, and D. Golberg: Excellent field-emission properties of P-doped GaN nanowires. J. Phys. Chem. B 109, 21521 (2005).

    Article  CAS  Google Scholar 

  132. A.C. Ford, S. Chuang, J.C. Ho, Y.L. Chueh, Z.Y. Fan, and A. Javey: Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn. Nano Lett. 10, 509 (2010).

    Article  CAS  Google Scholar 

  133. K.E. Moselund, H. Ghoneim, H. Schmid, M.T. Björk, E. Lortscher, S. Karg, G. Signorello, D. Webb, M. Tschudy, R. Beyeler, and H. Riel: Solid-state diffusion as an efficient doping method for silicon nanowires and nanowire field effect transistors. Nanotechnology 21, 435202 (2010).

    Article  CAS  Google Scholar 

  134. J.C. Ho, R. Yerushalmi, Z.A. Jacobson, Z. Fan, R.L. Alley, and A. Javey: Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 7, 62 (2008).

    Article  CAS  Google Scholar 

  135. S. Dhara, A. Datta, C.T. Wu, Z.H. Lan, K.H. Chen, Y.L. Wang, Y.F. Chen, C.W. Hsu, L.C. Chen, H.M. Lin, and C.C. Chen: Blueshift of yellow luminescence band in self-ion-implanted n-GaN nanowire. Appl. Phys. Lett. 84, 3486 (2004).

    Article  CAS  Google Scholar 

  136. O. Hayden, M.T. Björk, H. Schmid, H. Riel, U. Drechsler, S.F. Karg, E. Lortscher, and W. Riess: Fully depleted nanowire field-effect transistor in inversion mode. Small 3, 230 (2007).

    Article  CAS  Google Scholar 

  137. G.M. Cohen, M.J. Rooks, J.O. Chu, S.E. Laux, P.M. Solomon, J.A. Ott, R.J. Miller, and W. Haensch: Nanowire metal-oxide-semiconductor field effect transistor with doped epitaxial contacts for source and drain. Appl. Phys. Lett. 90, 233110 (2007).

    Article  CAS  Google Scholar 

  138. D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F.J. Tegude, W. Prost, M. Seibt, and C. Ronning: P-type doping of GaAs nanowires. Appl. Phys. Lett. 92, 163107 (2008).

    Article  CAS  Google Scholar 

  139. A. Colli, A. Fasoli, C. Ronning, S. Pisana, S. Piscanec, and A.C. Ferrari: Ion beam doping of silicon nanowires. Nano Lett. 8, 2188 (2008).

    Article  CAS  Google Scholar 

  140. P. Das Kanungo, R. Kögler, K. Nguyen-Duc, N. Zakharov, P. Werner, and U. Gösele: Ex situ n and p doping of vertical epitaxial short silicon nanowires by ion implantation. Nanotechnology 20, 165706 (2009).

    Article  CAS  Google Scholar 

  141. S. Hoffmann, J. Bauer, C. Ronning, T. Stelzner, J. Michler, C. Ballif, V. Sivakov, and S.H. Christiansen: Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett. 9, 1341 (2009).

    Article  CAS  Google Scholar 

  142. H.Y. Li, O. Wunnicke, M.T. Borgström, W.G.G Immink, M.H.M. van Weert, M.A. Verheijen, and E. Bakkers: Remote p-doping of InAs nanowires. Nano Lett. 7, 1144 (2007).

    Article  CAS  Google Scholar 

  143. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena: Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327, 60 (2010).

    Article  CAS  Google Scholar 

  144. F. Boxberg, N. Søndergaard, and H.Q. Xu: Photovoltaics with piezoelectric core-shell nanowires. Nano Lett. 10, 1108 (2010).

    Article  CAS  Google Scholar 

  145. J.R. Kim, B.K. Kim, I.J. Lee, J.J. Kim, J. Kim, S.C. Lyu, and C.J. Lee: Temperature-dependent single-electron tunneling effect in lightly and heavily doped GaN nanowires. Phys. Rev. B 69, 233303 (2004).

    Article  CAS  Google Scholar 

  146. E. Stern, G. Cheng, E. Cimpoiasu, R. Klie, S. Guthrie, J. Klemic, I. Kretzschmar, E. Steinlauf, D. Turner-Evans, E. Broomfield, J. Hyland, R. Koudelka, T. Boone, M. Young, A. Sanders, R. Munden, T. Lee, D. Routenberg, and M.A. Reed: Electrical characterization of single GaN nanowires. Nanotechnology 16, 2941 (2005).

    Article  CAS  Google Scholar 

  147. S. Sze: Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  148. P.M. Morse and H. Feshbach: Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

    Google Scholar 

  149. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, and M. Meyyappan: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247 (2004).

    Article  CAS  Google Scholar 

  150. O. Wunnicke: Gate capacitance of back-gated nanowire field-effect transistors. Appl. Phys. Lett. 89, 083102 (2006).

    Article  CAS  Google Scholar 

  151. D.R. Khanal and J. Wu: Gate coupling and charge distribution in nanowire field effect transistors. Nano Lett. 7, 2778 (2007).

    Article  CAS  Google Scholar 

  152. A.V. Kretinin, R. Popovitz-Biro, D. Mahalu, and H. Shtrikman: Multimode Fabry-Perot conductance oscillations in suspended stacking-faults-free InAs nanowires. Nano Lett. 10, 3439 (2010).

    Article  CAS  Google Scholar 

  153. H. Park, R. Beresford, S. Hong, and J. Xu: Geometry- and size-dependence of electrical properties of metal contacts on semiconducting nanowires. J. Appl. Phys. 108, 094308 (2010).

    Article  CAS  Google Scholar 

  154. D.G. Ivey, P. Jian, L. Wan, R. Bruce, S. Eicher, and C. Blaauw: Pd/Zn/Pd/Au ohmic contacts to p-type Inp. J. Electron. Mater. 20, 237 (1991).

    Article  CAS  Google Scholar 

  155. Y. Cui, Z.H. Zhong, D.L. Wang, W.U. Wang, and C.M. Lieber: High performance silicon nanowire field effect transistors. Nano Lett. 3, 149 (2003).

    Article  CAS  Google Scholar 

  156. Y. Huang, X. Duan, Y. Cui, and C.M. Lieber: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002).

    Article  CAS  Google Scholar 

  157. F. Leonard and A.A. Talin: Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys. Rev. Lett. 97, 026804 (2006).

    Article  CAS  Google Scholar 

  158. C. Thelander, M.T. Björk, M.W. Larsson, A.E. Hansen, L.R. Wallenberg, and L. Samuelson: Electron transport in InAs nanowires and heterostructure nanowire devices. Solid State Commun. 131, 573 (2004).

    Article  CAS  Google Scholar 

  159. Z.Y. Zhang, K. Yao, Y. Liu, C.H. Jin, X.L. Liang, Q. Chen, and L.M. Peng: Quantitative analysis of current-voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 17, 2478 (2007).

    Article  CAS  Google Scholar 

  160. W.M. Weber, L. Geelhaar, E. Unger, C. Cheze, F. Kreupl, H. Riechert, and P. Lugli: Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi B Basic Res. 244, 4170 (2007).

    Article  CAS  Google Scholar 

  161. R. Tu, L. Zhang, Y. Nishi, and H.J. Dai: Measuring the capacitance of individual semiconductor nanowires for carrier mobility assessment. Nano Lett. 7, 1561 (2007).

    Article  CAS  Google Scholar 

  162. S. Roddaro, K. Nilsson, G. Astromskas, L. Samuelson, L.E. Wernersson, O. Karlström, and A. Wacker: InAs nanowire metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 92, 253509 (2008).

    Article  CAS  Google Scholar 

  163. O. Karlström, A. Wacker, K. Nilsson, G. Astromskas, S. Roddaro, L. Samuelson, and L.E. Wernersson: Analysing the capacitance-voltage measurements of vertical wrapped-gated nanowires. Nanotechnology 19, 435201 (2008).

    Article  CAS  Google Scholar 

  164. G. Astromskas, K. Storm, O. Karlström, P. Caroff, M. Borgström, and L.E. Wernersson: Doping incorporation in InAs nanowires characterized by capacitance measurements. J. Appl. Phys. 108, 054306 (2010).

    Article  CAS  Google Scholar 

  165. E.C. Garnett, Y.C. Tseng, D.R. Khanal, J.Q. Wu, J. Bokor, and P.D. Yang: Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements. Nat. Nanotechnol. 4, 311 (2009).

    Article  CAS  Google Scholar 

  166. E.P.A.M Bakkers, J.A. Van Dam, S. De Franceschi, L.P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis: Epitaxial growth of InP nanowires on germanium. Nat. Mater. 3, 769 (2004).

    Article  CAS  Google Scholar 

  167. M. Bugajski and W. Lewandowski: Concentration-dependent absorption and photoluminescence of n-type InP. J. Appl. Phys. 57, 521 (1985).

    Article  CAS  Google Scholar 

  168. T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi: Raman scattering studies of electrically active impurities in in situ B-Doped silicon nanowires: Effects of annealing and oxidation. J. Phys. Chem. C 111, 15160 (2007).

    Article  CAS  Google Scholar 

  169. K. Jeganathan, R.K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grutzmacher, and H. Luth: Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires. J. Appl. Phys. 105, 123707 (2009).

    Article  CAS  Google Scholar 

  170. P. Parkinson, H.J. Joyce, Q. Gao, H.H. Tan, X. Zhang, J. Zou, C. Jagadish, L.M. Herz, and M.B. Johnston: Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett. 9, 3349 (2009).

    Article  CAS  Google Scholar 

  171. T. Richter, H. Luth, R. Meijers, R. Calarco, and M. Marso: doping concentration of gan nanowires determined by opto-electrical measurements. Nano Lett. 8, 3056 (2008).

    Article  CAS  Google Scholar 

  172. N.A. Sanford, P.T. Blanchard, K.A. Bertness, L. Mansfield, J.B. Schlager, A.W. Sanders, A. Roshko, B.B. Burton, and S.M. George: Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 107, 034318 (2010).

    Article  CAS  Google Scholar 

  173. M.C. Putnam, M.A. Filler, B.M. Kayes, M.D. Kelzenberg, Y.B. Guan, N.S. Lewis, J.M. Eiler, and H.A. Atwater: Secondary ion mass spectrometry of vapor-liquid-solid grown, Au-catalyzed, Si wires. Nano Lett. 8, 3109 (2008).

    Article  CAS  Google Scholar 

  174. D.E. Perea, J.E. Allen, S.J. May, B.W. Wessels, D.N. Seidman, and L.J. Lauhon: Three-dimensional nanoscale composition mapping of semiconductor nanowires. Nano Lett. 6, 181 (2006).

    Article  CAS  Google Scholar 

  175. J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, and L.J. Lauhon: High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3, 168 (2008).

    Article  CAS  Google Scholar 

  176. T. Xu, J.P. Nys, B. Grandidier, D. Stievenard, Y. Coffinier, R. Boukherroub, R. Larde, E. Cadel, and P. Pareige: Growth of Si nanowires on micropillars for the study of their dopant distribution by atom probe tomography. J. Vac. Sci. Technol., B 26, 1960 (2008).

    Article  CAS  Google Scholar 

  177. D.E. Perea, J.L. Lensch, S.J. May, B.W. Wessels, and L.J. Lauhon: Composition analysis of single semiconductor nanowires using pulsed-laser atom probe tomography. Appl. Phys. A 85, 271 (2006).

    Article  CAS  Google Scholar 

  178. T.J. Prosa, R. Alvis, L. Tsakalakos, and V.S. Smentkowski: Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: Protected lift-out specimen preparation for atom probe tomography. J. Microsc. (Oxf.) 239, 92 (2010).

    CAS  Google Scholar 

  179. L.J. Lauhon, P. Adusumilli, P. Ronsheim, P.L. Flaitz, and D. Lawrence: Atom-probe tomography of semiconductor materials and device structures. MRS Bull. 34, 738 (2009).

    Article  CAS  Google Scholar 

  180. D.D.D Ma, C.S. Lee, and S.T. Lee: Scanning tunneling microscopic study of boron-doped silicon nanowires. Appl. Phys. Lett. 79, 2468 (2001).

    Article  CAS  Google Scholar 

  181. C. Yang, Z.H. Zhong, and C.M. Lieber: Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310, 1304 (2005).

    Article  CAS  Google Scholar 

  182. S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F.J. Tegude, and G. Bacher: Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy. Nanotechnology 20, 385702 (2009).

    Article  CAS  Google Scholar 

  183. E. Koren, N. Berkovitch, and Y. Rosenwaks: Measurement of active dopant distribution and diffusion in individual silicon nanowires. Nano Lett. 10, 1163 (2010).

    Article  CAS  Google Scholar 

  184. X. Ou, P. Das Kanungo, R. Kögler, P. Werner, U. Gösele, W. Skorupa, and X. Wang: Carrier profiling of individual Si nanowires by scanning spreading resistance microscopy. Nano Lett. 10, 171 (2010).

    Article  CAS  Google Scholar 

  185. J.M. Stiegler, A.J. Huber, S.L. Diedenhofen, J.G. Rivas, R.E. Algra, E. Bakkers, and R. Hillenbrand: Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy. Nano Lett. 10, 1387 (2010).

    Article  CAS  Google Scholar 

  186. X.F. Wang, F.Q. Song, Q. Chen, T.Y. Wang, J.L. Wang, P. Liu, M.R. Shen, J.G. Wan, G.H. Wang, and J.B. Xu: Scaling dopant states in a semiconducting nanostructure by chemically resolved electron energy-loss spectroscopy: a case study on Co-Doped ZnO. J. Am. Chem. Soc. 132, 6492 (2010).

    Article  CAS  Google Scholar 

  187. X.C. Jiang, Q.H. Xiong, S. Nam, F. Qian, Y. Li, and C.M. Lieber: InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was performed within the Nanometer Structure Consortium at Lund University and was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, the Nordic Innovation Centre project Nanordsun, and the EU program AMON-RA (214814). This report is based on a project that was funded by E.ON AG as part of the E.ON International Research Initiative. The authors thank Claes Thelander and Knut Deppert for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Wallentin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallentin, J., Borgström, M.T. Doping of semiconductor nanowires. Journal of Materials Research 26, 2142–2156 (2011). https://doi.org/10.1557/jmr.2011.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.214

Navigation