Skip to main content
Log in

Growth of nanoparticulate films of Ca3Co4O9 by a microwave plasma–assisted spray process

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this article, we report the use of a microwave plasma in a microwave plasma–assisted spray (MPAS) technique to grow crystalline nanoparticles of the oxide thermoelectric material Ca3Co4O9. This unique growth process allows the formation of nanoparticle coatings on substrates from an aqueous precursor of Ca and Co salts. The particle size is controlled from few tens to few hundred nanometers by varying the concentration of the precursor. The resistivity, Seebeck coefficient, and the power factor (PF) measured in the temperature range of 300–700 K for films grown by MPAS process with varying concentrations of calcium and cobalt chlorides are presented. Films with larger nanoparticles showed a trend toward higher PFs than those with smaller nanoparticles. Films with PFs as high as 220 μW/mK2 were observed to contain larger nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

REFERENCES

  1. T. Tritt and M. Subramanian: Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  2. B. Van Zeghbroeck: Principles of Semiconductor Devices (University of Colorado, Boulder, CO, 2006) online text.ecee.colorado.edu/∼bart/book/book/index.html

    Google Scholar 

  3. G. Xu, R. Funahashi, M. Shikano, I. Matsubara, and Y. Zhou: Thermoelectric properties of the Bi- and Na- substituted Ca3Co4O9 system. Appl. Phys. Lett. 80(20), 3760 (2002).

    Article  CAS  Google Scholar 

  4. G. J. Snyder and E. Toberer: Complex thermoelectric materials—Review article. Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  5. H. Bottner, G. Chen, and R. Venkatasubramanian: Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bull. 31, 211 (2006).

    Article  Google Scholar 

  6. K. Koumoto, I. Terasaki, and R. Funahashi: Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206 (2006).

    Article  CAS  Google Scholar 

  7. T. Tyson, Z. Chen, Q. Jie, Q. Li, and J. Tu: Local structure of thermoelectric Ca3Co4O9. Phys. Rev. B 79, 024109 (2009).

    Article  Google Scholar 

  8. R. Venkatasubramanian, E. Slivola, T. Colpitts, and B. O’Quinn: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  9. R. Hyde, M. Beekman, G.S. Nolas, P. Mukherjee, and S. Witanachchi: Growth and characterization of germanium-based type I clathrate thin films deposited by pulsed laser ablation, in Proceedings of the 31st International Conference on Advanced Ceramics and Composites, American Ceramics Society, Vol. 28, Issue 8 (Wiley, Hoboken, NJ, 2009), p. 211.

  10. L. Bertini, K. Billquist, M. Christensen, C. Gatti, L. Holmgren, B. Iverson, E. Mueller, M. Muhammed, G. Noriega, A. Palmqvist, D. Platzek, D. Rowe, A. Saramat, C. Stiewe, M. Toprak, S. Williams, and Y. Zhang: Grain size dependence of transport properties of nano-engineered thermoelectric CoSb3, in Proceedings of the 22nd International Conference on Thermoelectrics, August 21, 2003, p. 93.

  11. G. Nolas, J. Sharp, and H. Goldsmid: Thermoelectrics—Basic Principles and New Materials Developments (Springer-Verlag, Berlin, Heidelberg, New York, 2001).

    Book  Google Scholar 

  12. M. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Muller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed: The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv. Funct. Mater. 14(12), 1189 (2004).

    Article  CAS  Google Scholar 

  13. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dresselhaus, G. Chen, and Z. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  14. A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas: Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B 79, 205302 (2009).

    Article  Google Scholar 

  15. A. Popescu and L.M. Woods: Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring. Appl. Phys. Lett. 97, 052102.1 (2010).

    Article  Google Scholar 

  16. M. Zebarjadi, K. Esfarjani, A. Shakouri, J. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide, and A. Gossard: Effect of nanoparticle scattering on thermoelectric power factor. Appl. Phys. Lett. 94, 202105 (2009).

    Article  Google Scholar 

  17. Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su: Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9. J. Alloys Compd. 477, 817 (2009).

    Article  CAS  Google Scholar 

  18. H. Eng, W. Prellier, S. Hebert, D. Grebille, L. Mechin, and B. Mercey: Influence of pulsed laser deposition growth conditions on the thermoelectric properties of Ca3Co4O9 thin films. J. Appl. Phys. 97, 013706 (2005).

    Article  Google Scholar 

  19. Y.F. Hu, E. Sutter, W.D. Si, and Q. Li: Thermoelectric properties and microstructure of c-axis-oriented thin films on glass substrates. Appl. Phys. Lett. 87, 171912 (2005).

    Article  Google Scholar 

  20. T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie, J.-F. Li, and J. Li: Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol-gel electrospinning and spark plasma sintering. J. Phys. Chem. C 114, 10061 (2010).

    Article  CAS  Google Scholar 

  21. Y. Zhang, J.X. Zhang, Q.M. Lu, and Q.Y. Zhang: Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method. Mater. Lett. 60, 2443 (2006).

    Article  CAS  Google Scholar 

  22. Y. Mitzutani, Y. Uga, and T. Nishimoto: An investigation on ultrasonic atomization. Bull. JSME 15(83), 620 (1972).

    Article  Google Scholar 

  23. T. Wangensteen, S. Witanachchi, and P. Mukherjee: Initial studies of thermoelectric nanoparticle growth using a laser-assisted spray pyrolysis (LASP) method, Presented at 31st International Conference on Advanced Ceramics and Composites, Daytona Beach, FL (2007).

  24. M. Merlak: Design and characterization of microwave assisted spray deposition system: Application to Eu doped Y2O3 nano-particle coatings. Master’s Thesis, University of South Florida (2010).

    Google Scholar 

  25. T. Wangensteen, T. Dhakal, M. Merlak, S. Witanachchi, M.H. Phan, H. Srikanth, and P. Mukherjee: Growth of uniform ZnO nanoparticles by a microwave plasma process. J. Alloys Compd. 509, 6859 (2011).

    Article  CAS  Google Scholar 

  26. Y. Zhang, J.X. Zhang, and Q.M. Lu: Rapid synthesis of Ca2Co2O5. J. Alloys Compd. 399, 64 (2005).

    Article  CAS  Google Scholar 

  27. O. Kwon, W. Jo, K. Ko, J. Kim, S. Bae, H. Koo, S. Jeong, J. Kim, and C. Park: Thermoelectric properties and texture evaluation of Ca3Co4O9 prepared by a cost-effective multisheet cofiring technique. J. Mater. Sci. 46(9), 2887 (2011).

    Article  CAS  Google Scholar 

  28. M. Shikano and R. Funahashi: Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003).

    Article  CAS  Google Scholar 

  29. J. Cheng, Y. Sui, Y. Wang, X. Wang, and W. Su: First-order phase transition characteristic of the high temperature metal-semiconductor transition in [Ca2CoO3]0.62[CoO2]. Appl. Phys. Mater. Sci. Process. 94, 911 (2008).

    Article  Google Scholar 

  30. L. Woods, A. Popescu, J. Martin, and G. Nolas: Transport properties of thermoelectric nanocomposites, in Materials and Devices for Thermal-to-Electric Energy Conversion, edited by J. Yang, G.S. Nolas, K. Koumoto, and Y. Grin (Mater. Res. Soc. Symp. Proc. 1166, Warrendale, PA, 2009) 1166-N05-08, p. 121.

    Google Scholar 

  31. C. Vineis, T. Harman, S. Calawa, M. Walsh, R. Reeder, R. Singh, and A. Shakouri: Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices. Phys. Rev. B 77, 235202 (2008).

    Article  Google Scholar 

  32. L. Shi, D. Yao, G. Zhang, and B. Li: Size dependent thermoelectric properties of silicon nanowires. Appl. Phys. Lett. 95, 063102 (2009).

    Article  Google Scholar 

  33. A. Ishida, D. Cao, S. Morioka, Y. Inoue, and T. Kita: Seebeck effect in IV–VI semiconductor films and quantum wells. J. Electron. Mater. 38(7), 940 (2009).

    Article  CAS  Google Scholar 

  34. A. Amith: Seebeck coefficient in N-type germanium-silicon alloys: “Competition” region. Phys. Rev. 139, A1626 (1963).

    Google Scholar 

  35. Y. Kinemuchi, H. Nakano, M. Mikami, K. Kobayashi, K. Watari, and Y. Hotta: Enhanced boundary-scattering of electrons and phonons in nanograined zinc oxide. J. Appl. Phys. 108, 053721 (2010).

    Article  Google Scholar 

  36. W. Brinkman and T. Rice: Application of Gutzwiller’s variational method to the metal-insulator transition. Phys. Rev. B 2(10), 4302 (1970).

    Article  Google Scholar 

  37. Y. Wang, Y. Sui, J. Cheng, X. Wang, W. Su, and H. Fan: Influence of Y3+ doping on the high-temperature transport mechanism and thermoelectric response of misfit-layered Ca3Co4O9. Applied Physics A 99, 451 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted Wangensteen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wangensteen, T., Merlak, M., Dhakal, T. et al. Growth of nanoparticulate films of Ca3Co4O9 by a microwave plasma–assisted spray process. Journal of Materials Research 26, 1940–1946 (2011). https://doi.org/10.1557/jmr.2011.191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.191

Navigation