Skip to main content
Log in

Enhancing the Thermoelectric Properties of Ca3Co4O9 Thin Films by the Addition of a Nanoscale NbN x Second Phase

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-quality Ca3Co4O9 (CCO) thin films have been epitaxially grown on c-cut Al2O3 single crystal substrates using pulsed laser deposition (PLD). Different doses of Nb ions were injected into the films using an ion beam injection technique, and a nanoscale NbN x second phase was generated in the films after annealing in pure N2. The resistivity and Seebeck coefficient of the films were measured in the temperature range 175–375 K. The results demonstrated that the power factor of the films increases when injected with appropriate quantities of Nb. When the injected Nb concentration was 1.46 × 1020/cm3, the power factor of the film reached 0.17 mW/m K2 at room temperature, which is nearly twice as large as that for pure CCO film. A maximum value of 0.22 mW/m K2 was obtained at 375 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 3627 (2001).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. L. Han, Y. Jiang, S.Y. Li, H.M. Su, X.Z. Lan, K.X. Qin, T.T. Han, H.H. Zhong, L. Chen, and D.B. Yu, J Alloys Compd 509, 8970 (2011).

    Article  Google Scholar 

  4. A.C. Masset, C. Michel, A. Maiganan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys Rev B 62, 166 (2000).

    Article  Google Scholar 

  5. M. Prevel, S. Lemonnier, Y. Klein, S. Hébert, D. Chateigner, B. Ouladdiaf, and J.G. Noudem, J. Appl. Phys. 98, 093706 (2005).

    Article  Google Scholar 

  6. H.W. Eng, W. Prellier, S. Hebert, and D. Grebille, J. Appl. Phys. 97, 013706 (2005).

    Article  Google Scholar 

  7. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  8. J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).

    Article  Google Scholar 

  9. H. Ohta, K. Sugiura, and K. Koumoto, Inorg. Chem. 47, 8429 (2008).

    Article  Google Scholar 

  10. A. Bhaskar, C.-S. Jhang, and C.-J. Liu, J. Electron. Mater. 42, 2582 (2013).

    Article  Google Scholar 

  11. N.V. Nong, N. Pryds, S. Linderoth, and M. Ohtak, Adv. Mater. 23, 2484 (2011).

    Article  Google Scholar 

  12. Y. Wang, Y. Sui, J.J. Cheng, X.J. Wang, and W.H. Su, J. Phys. D Appl. Phys. 41, 045406 (2008).

    Article  Google Scholar 

  13. M. Mikami, N. Andoa, and R. Funahashi, J. Solid State Chem. 178, 2186 (2005).

    Article  Google Scholar 

  14. T. Sun, H.H. Hng, Q.Y. Yan, and J. Ma, J. Alloys Compd. 511, 133 (2012).

    Article  Google Scholar 

  15. C.H. Zhu, H.P. An, W.W. Ge, Z.Z. Li, and G.D. Tang, J. Alloys Compd. 567, 122 (2013).

    Article  Google Scholar 

  16. J.F. Ziegler, Software for the stopping and range of ions in matter, homepage: http://www.srim.org.

  17. J.G. Speight, Lange’s Handbook of Chemistry, 16th ed. (New York: McGraw-Hill, 2005).

    Google Scholar 

  18. K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, J. Appl. Phys. 63, 1733 (1988).

    Article  Google Scholar 

  19. S. Reiff, R. Huber, P. Ziemann, and A.B. Kaiser, J. Phys. 1, 10107 (1989).

    Google Scholar 

  20. R. Sanjines, M. Benkahoul, C.S. Sandu, P.E. Schmid, and F. Levy, Thin Solid Films 494, 190 (2006).

    Article  Google Scholar 

  21. Y. Wang, N.S. Rogado, R.J. Cava, and N.P. Ong, Nature 423, 425 (2003).

    Article  Google Scholar 

  22. A.J. Bosman and J. Daal, Adv. Phys. 19, 1 (1970).

    Article  Google Scholar 

  23. C.J. Liu, L.C. Huang, and J.S. Wang, Appl. Phys. Lett. 89, 204102 (2006).

    Article  Google Scholar 

  24. Y. Wang, Y. Sui, J.G. Cheng, X.J. Wang, and W.H. Su, J. Alloys Compd. 477, 817 (2009).

    Article  Google Scholar 

  25. Y. Wang, Y. Sui, P. Ren, L. Wang, X.J. Wang, W.H. Su, and H.J. Fan, Chem. Mater. 22, 1155 (2010).

    Article  Google Scholar 

  26. M. Cutler and N.F. Mott, Phys. Rev. 181, 1336 (1969).

    Article  Google Scholar 

  27. G. Xu, R. Funahashi, M. Shikano, I. Matsubara, and Y. Zhou, Appl. Phys. Lett. 80, 3760 (2002).

    Article  Google Scholar 

  28. G. Xu, R. Funahashi, M. Shikano, Q. Pu, and B. Liu, Solid State Commun. 124, 73 (2002).

    Article  Google Scholar 

  29. M. Mikami, K. Chong, Y. Miyazaki, T. Kajitani, T. Inoue, S. Sodeoka, and R. Funahashi, Jpn. J. Appl. Phys. 45, 4131 (2006).

    Article  Google Scholar 

  30. Y.F. Zhang and J.X. Zhang, J. Mater. Process. Tech. 208, 70 (2008).

    Article  Google Scholar 

  31. M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).

    Article  Google Scholar 

  32. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics basic principles and new materials developments (New York: Springer, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuangzhi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Li, Z., An, H. et al. Enhancing the Thermoelectric Properties of Ca3Co4O9 Thin Films by the Addition of a Nanoscale NbN x Second Phase. J. Electron. Mater. 43, 3666–3671 (2014). https://doi.org/10.1007/s11664-014-3285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3285-0

Keywords

Navigation