Skip to main content
Log in

Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Synthesis of titania (TiO2) nanorods on various substrates has recently attracted attention for energy and environmental applications. Herein, we report growth of nanostructured TiO2 on Si(111) and glass borosilicate substrates by a two-step method. A thin film of anatase TiO2 was first laid down by spin coating and annealing, followed by the growth of rutile TiO2 nanorods with a hydrothermal method. To understand the role of the polycrystalline anatase TiO2 seed layer, we selected a relatively high temperature for the hydrothermal reaction, e.g., 175 °C at which no rutile TiO2 nanorods could grow without the precoated anatase TiO2 layer. The morphology and microstructure of both the polycrystalline anatase and rutile nanorod layers were characterized by electron microscopy and x-ray powder diffraction. Such a two-step fabrication method makes it possible to grow TiO2 nanorods on almost any substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, and A. Fujishima: Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42, 8547 (2008).

    Article  CAS  Google Scholar 

  2. A. Fujishima, X. Zhang, and D.A. Tryk: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).

    Article  CAS  Google Scholar 

  3. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  4. L. Chen, M.E. Graham, G. Li, and K.A. Gray: Fabricating highly active mixed TiO2 photocatalysts by reactive DC magnetron sputter deposition. Thin Solid Films 515, 1176 (2006).

    Article  CAS  Google Scholar 

  5. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  6. A. Fujishima and K. Honda: Studies on photosensitive electrode reactions. Bull. Chem. Soc. Jpn. 44, 1148 (1971).

    Article  CAS  Google Scholar 

  7. B. O’Regan and M. Gratzel: A low cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Article  Google Scholar 

  8. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).

    Article  CAS  Google Scholar 

  9. A. Kongkanand, K. Tvrdy, K. Takechi, M.K. Kuno, and P.V. Kamat: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130, 4007 (2008).

    Article  CAS  Google Scholar 

  10. B. Vijayan, N.M. Dimitrijevic, T. Rajh, and K. Gray: Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J. Phys. Chem. C 114, 12994 (2010).

    Article  CAS  Google Scholar 

  11. N.M. Dimitrijevic, Z.V. Saponjic, B.M. Rabatic, O.G. Poluektov, and T. Rajh: Effect of size and shape of nanocrystalline TiO2 on photogenerated charges. An EPR study. J. Phys. Chem. C 111, 14597 (2007).

    Article  CAS  Google Scholar 

  12. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, and M.C. Thurnauer: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545 (2003).

    Article  CAS  Google Scholar 

  13. C.A. Chen, Y.M. Chen, A. Korotcov, Y.S. Huang, D.S. Tsai, and K.K. Tiong: Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrate via metal-organic chemical vapor deposition. Nanotechnology 19, 075611 (2008).

    Article  CAS  Google Scholar 

  14. J.-J. Wu and C.-C. Yu: Aligned TiO2 nanorods and nanowalls. J. Phys. Chem. B 108, 3377 (2004).

    Article  CAS  Google Scholar 

  15. J.-M. Wu, H.C. Shih, Y.-K. Tseng, C.-L. Hsu, and C.-Y. Tsay: Synthesizing and comparing the photocatalytic activities of single-crystalline TiO2 rutile nanowires and mesoporous anatase paste. J. Electrochem. Soc. 154, H157 (2007).

    Article  CAS  Google Scholar 

  16. J.-M. Wu, H.C. Shih, and W.-T. Wu: Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17, 105 (2006).

    Article  CAS  Google Scholar 

  17. W. Smith, S. Mao, G. Lu, A. Catlett, J. Chen, and Y.-P. Zhao: The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays. Chem. Phys. Lett. 485, 171 (2010).

    Article  CAS  Google Scholar 

  18. Y. Li, X.S. Fang, N. Koshizaki, T. Sasaki, L. Li, S.Y. Gao, Y. Shimizu, Y. Bando, and D. Golberg: Periodic TiO2 nanorod arrays with hexagonal nonclose-packed arrangements: Excellent field emitters by parameter optimization. Adv. Funct. Mater. 19, 2467 (2009).

    Article  CAS  Google Scholar 

  19. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, and C.A. Grimes: Vertical aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).

    Article  CAS  Google Scholar 

  20. Y. Han, G. Wu, M. Wang, and H.Z. Chen: The growth of a c-axis highly oriented sandwiched TiO2 film with superhydrophilic properties without UV irradiation on SnO: F substrate. Nanotechnology 20, 235605 (2009).

    Article  Google Scholar 

  21. B. Liu and E.S. Aydil: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).

    Article  CAS  Google Scholar 

  22. A. Kumar, A.R. Madaria, and C-W. Zhou: Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrate and their application in dye-sensitized solar cells. J. Phys. Chem. C 114, 7787 (2010).

    Article  CAS  Google Scholar 

  23. H.-E. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, I. Bello, and S.-T. Lee: Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Appl. Phys. Lett. 96, 263104 (2010).

    Article  Google Scholar 

  24. O.O. Prieto-Mahaney, N. Murakami, R. Abe, and B. Ohtani: Correlation between photocatalytic activities and structural and physical properties of titanium (IV) oxide powders. Chem. Lett. 38, 238 (2009).

    Article  CAS  Google Scholar 

  25. S.J. Kim, J.K. Lee, E.G. Lee, H.G. Lee, and K.S. Lee: Photocatalytic properties of rutile TiO2 acicular particles in aqueous 4-chlorophenol solution. J. Mater. Res. 18, 729 (2003).

    Article  CAS  Google Scholar 

  26. M.H. Habibi and H. Vosooghian: Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxides suspension. J. Photochem. Photobiol. A 174, 45 (2005).

    Article  CAS  Google Scholar 

  27. A. Zachariah, K.V. Baiju, S. Shukla, K.S. Deepa, J. James, and K.G.K. Warrier: Synergistic effect photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J. Phys. Chem. C 112, 11345 (2008).

    Article  CAS  Google Scholar 

  28. G.H. Li, S. Ciston, Z.V. Saponjic, L. Chen, N.M. Dimitrijevic, T. Rajh, and K.A. Gray: Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal. 253, 105 (2008).

    Article  CAS  Google Scholar 

  29. T. Miyagi, M. Kamei, T. Mitsuhashi, T. Ishigaki, and A. Yamazaki: Charge separation at the rutile/anatase interface: A dominant factor of photocatalytic activity. Chem. Phys. Lett. 390, 399 (2004).

    Article  CAS  Google Scholar 

  30. T.A. Kandiel, R. Dillert, A. Feldhoff, and D.W. Bahnemann: Direct synthesis of photocatalytically active rutile TiO2 nanorods partly decorated with anatase nanoparticles. J. Phys. Chem. C 114, 4909 (2010).

    Article  CAS  Google Scholar 

  31. G.H. Li, N.M. Dimitrijevic, L. Chen, J.M. Nichols, T. Rajh, and K.A. Gray: The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites. J. Am. Chem. Soc. 130, 5402 (2008).

    Article  CAS  Google Scholar 

  32. G.H. Li and K.A. Gray: The solid-solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 339, 173 (2007).

    Article  CAS  Google Scholar 

  33. A.A. Gribb and J.F. Banfield: Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral. 82, 717 (1997).

    Article  CAS  Google Scholar 

  34. H.M. Cheng, J.M. Ma, Z.G. Zhao, and L.M. Qi: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 66 (1995).

    Google Scholar 

Download references

Acknowledgments

The research was supported by a Northwestern University’s Initiative for Sustainability and Energy at Northwestern seed grant and U.S. Department of Energy, under Contract DE-AC02-06CH11357 (Institute for Catalysis in Energy Processes). The electron microscopy work was performed in the Electron probe instrumentation center facility of NUANCE Center (supported by NSF Nanoscale Science & Engineering Center, NSF Materials Research Science & Engineering Center, Keck Foundation, the State of Illinois) at Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Lo, S., Song, K. et al. Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates. Journal of Materials Research 26, 1646–1652 (2011). https://doi.org/10.1557/jmr.2011.190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.190

Navigation