Skip to main content

Advertisement

Log in

Kinetics of reactions of Ni contact pads with Si nanowires

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

For development and integration of Si nanowires into nanoelectronic devices, an understanding of Ni silicide formation in electrical contacts to Si nanowires is necessary. Here, we examine the kinetics of Ni silicide phase formation. For Si nanowires with [111] growth directions, NiSi2 is the only phase to form in the temperature range 400–550 °C, and the NiSi2 growth exhibits linear kinetics from 400 to 500 °C with an activation energy of 0.76 ± 0.10 eV. In the case of Si nanowires with [112] growth directions, growth of the θ-Ni2Si phase in contact with the Si nanowire occurs with parabolic kinetics over the temperature range 400–550 °C, and an activation energy of 1.45 ± 0.07 eV/atom is extracted. Differences in the growth rates for Ni silicide phases with different SiNW growth directions implies that for simultaneous preparation of SiNW devices with Ni silicide contacts, SiNWs with the same growth direction are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.

Similar content being viewed by others

References

  1. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, and C.M. Lieber: High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149 (2003).

    Article  CAS  Google Scholar 

  2. X. Duan, C. Niu, V. Sahi, J. Chen, J. Wallace Parce, S. Empedocles, and J.L. Goldman: High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274 (2003).

    Article  CAS  Google Scholar 

  3. Y. Cui, Q. Wei, H. Park, and C.M. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).

    Article  CAS  Google Scholar 

  4. C. Lavoie, F.M. d’Heurle, C. Detavernier, and C. Cabral Jr.: Towards implementation of a nickel silicide process for CMOS technologies. Microelectron. Eng. 70, 144 (2003).

    Article  CAS  Google Scholar 

  5. K.C. Lu, K.N. Tu, W.W. Wu, L.J. Chen, B.Y. Yoo, and N.V. Myung: Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si. Appl. Phys. Lett. 90, 253111 (2007).

    Article  Google Scholar 

  6. K.C. Lu, W.W. Wu, H.W. Wu, C.M. Tanner, J.P. Chang, L.J. Chen, and K.N. Tu: In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 7(8), 2389 (2007).

    Article  CAS  Google Scholar 

  7. Y.C. Chou, W.W. Wu, L.J. Chen, and K.N. Tu: Homogeneous nucleation of epitaxial CoSi2 and NiSi in Si nanowires. Nano Lett. 9(6), 2337 (2009).

    Article  CAS  Google Scholar 

  8. Y.C. Lin, Y. Chen, D. Xu, and Y. Huang: Growth of nickel silicides in Si and Si/SiOx core/shell nanowires. Nano Lett. 10, 4721 (2010).

    Article  CAS  Google Scholar 

  9. W.M. Weber, L. Geelhaar, E. Unger, C. Cheze, F. Kreupl, H. Riechert, and P. Lugli: Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi B 244(11), 4170 (2007).

    Article  CAS  Google Scholar 

  10. Y. Wu, J. Xiang, C. Yang, W. Lu, and C.M. Lieber: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61 (2004).

    Article  CAS  Google Scholar 

  11. Z. Zhang, J. Lu, P.E. Hellstrom, M. Ostling, and S.L. Zhang: Ni2Si nanowires of extraordinarily low resistivity. Appl. Phys. Lett. 88, 213103 (2006).

    Article  Google Scholar 

  12. N.S. Dellas, B.Z. Liu, S.M. Eichfeld, C.M. Eichfeld, T.S. Mayer, and S.E. Mohney: Orientation dependence of nickel silicide formation in contacts to silicon nanowires. J. Appl. Phys. 105, 094309 (2009).

    Article  Google Scholar 

  13. A. Katsman, Y. Yaish, E. Rabkin, and M. Beregovsky: Surface diffusion controlled formation of nickel silicides in silicon nanowires. J. Electron. Mater. 39(4), 365 (2010).

    Article  CAS  Google Scholar 

  14. J.C. Ciccariello, S. Poize, and P. Gas: Lattice and grain boundary self-diffusion in Ni2Si: Comparison with thin-film formation. J. Appl. Phys. 67(7), 3315 (1990).

    Article  CAS  Google Scholar 

  15. L.R. Zheng, L.S. Hung, J.W. Mayer, G. Majni, and G. Ottaviani: Lateral diffusion of Ni and Si through Ni2Si in Ni/Si couples. Appl. Phys. Lett. 41(7), 646 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. Long-Qing Chen for discussion and Prof. Joan Redwing for supplying SiNWs. The use of the Penn State Nanofabrication Facility [National Science Foundation (NSF), National Nanotechnology Infrastructure Network (NNIN) ECCS-0335765] is also acknowledged. The authors are grateful for financial support from NSF ECS-0609282 (to N.S. Dellas), as well as Army Research Office W911NF-09-1-0140 and the Gates Foundation (to M. Abraham).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne E. Mohney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellas, N.S., Abraham, M., Minassian, S. et al. Kinetics of reactions of Ni contact pads with Si nanowires. Journal of Materials Research 26, 2282–2285 (2011). https://doi.org/10.1557/jmr.2011.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.188

Navigation