Skip to main content
Log in

Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we reported the design, fabrication, and characterization of wellordered arrays of vertically-aligned, epitaxial NiSi2/Si heterostructures and single-crystalline NiSi2 nanowires on (001)Si substrates. The epitaxial NiSi2 with \(\{ \bar 111\}\) facets was found to be the first and the only silicide phase formed inside the Si nanowires after annealing at a temperature as low as 300 °C. Upon annealing at 500 °C for 4 h, the residual parts of Si nanowires were completely consumed and the NiSi2/Si heterostructured nanowires were transformed to fully silicided NiSi2 nanowires. XRD, TEM and SAED analyses indicated that all the NiSi2 nanowires were single crystalline and their axial orientations were parallel to the [001] direction. The obtained vertically-aligned NiSi2 nanowires, owing to their well-ordered arrangement, single-crystalline structure, and low effective work function, exhibit excellent field-emission properties with a very low turn-on field of 1.1 V/m. The surface wettability of the nanowires was found to switch from hydrophobic to hydrophilic after the formation of NiSi2 phase and the measured water contact angle decreased with increasing extent of Ni silicidation. The increased hydrophilicity can be explained by the Wenzel model. The obtained results present the exciting prospect that the new approach proposed here will provide the capability to fabricate other highly-ordered, vertically-aligned fully silicided nanowire arrays and may offer potential applications in constructing vertical silicide-based nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, Q. F.; Cai, M.; Balogh, M. P.; Tessema, M. M.; Lu, Y. F. Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts. Nano Res. 2012, 5, 145–151.

    Article  Google Scholar 

  2. Liang, W. J.; Rabin, O.; Hochbaum, A. I.; Fardy, M.; Zhang, M. J.; Yang, P. D. Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2009, 2, 394–399.

    Article  Google Scholar 

  3. Chen, S. Y.; Yeh, P. H.; Wu, W. W.; Chen, U. S.; Chueh, Y. L.; Yang, Y. C.; Gwo, S.; Chen, L. J. Low resistivity metal silicide nanowires with extraordinarily high aspect ratio for future nanoelectronic devices. ACS Nano 2011, 5, 9202–9207.

    Article  Google Scholar 

  4. Kohandehghan, A.; Kalisvaart, P.; Kupsta, M.; Zahiri, B.; Amirkhiz, B. S.; Li, Z. P.; Memarzadeh, E. L.; Bendersky, L. A.; Mitlin, D. Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 1600–1612.

    Article  Google Scholar 

  5. Lin, Y. C.; Lu, K. C.; Wu, W. W.; Bai, J. W.; Chen, L. J.; Tu, K. N.; Huang, Y. Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett. 2008, 8, 913–918.

    Article  Google Scholar 

  6. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61–65.

    Article  Google Scholar 

  7. Dasgupta, N. P.; Xu, S. C.; Jung, H. J.; Iancu, A.; Fasching, R.; Sinclair, R.; Prinz, F. B. Nickel silicide nanowire arrays for anti-reflective electrodes in photovoltaics. Adv. Funct. Mater. 2012, 22, 3650–3657.

    Article  Google Scholar 

  8. Schmitt, A. L.; Higgins, J. M.; Szczech, J. R.; Jin, S. Synthesis and applications of metal silicide nanowires. J. Mater. Chem. 2010, 20, 223–235.

    Article  Google Scholar 

  9. Kim, J.; Anderson, W. A. Direct electrical measurement of the self-assembled nickel silicide nanowire. Nano Lett. 2006, 6, 1356–1359.

    Article  Google Scholar 

  10. Yuan, F. W.; Wang, C. Y.; Li, G. A; Chang, S. H.; Chu, L. W.; Chen, L. J.; Tuan, H. Y. Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers. Nanoscale 2013, 5, 9875–9881.

    Article  Google Scholar 

  11. Valentín, L. A.; Carpena-Nuñez, J.; Yang, D.; Fonseca, L. F. Field emission properties of single crystal chromium disilicide nanowires. J. Appl. Phys. 2013, 113, 014308.

    Article  Google Scholar 

  12. Chen, S. Y.; Chen, L. J. Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy. Thin Solid Films 2006, 508, 222–225.

    Article  Google Scholar 

  13. Liang, S.; Islam, R.; Smith, D. J.; Bennett, P. A. Phase transformation in FeSi2 nanowires. J. Cryst. Growth 2006, 295, 166–171.

    Article  Google Scholar 

  14. He, Z. A.; Stevens, M.; Smith, D. J.; Bennett, P. A. Epitaxial titanium silicide islands and nanowires. Surf. Sci. 2003, 524, 148–156.

    Article  Google Scholar 

  15. Kim, D. J.; Seol, J. K.; Lee, M. R.; Hyung, J. H.; Kim, G. S.; Ohgai, T.; Lee, S. K. Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes. Appl. Phys. Lett. 2012, 100, 163703–163706.

    Article  Google Scholar 

  16. Liu, B. Z.; Wang, Y. F.; Dilts, S.; Mayer, T. S.; Mohney, S. E. Silicidation of silicon nanowires by platinum. Nano Lett. 2007, 7, 818–824.

    Article  Google Scholar 

  17. Szczech, J. R.; Schmitt, A. L.; Bierman, M. J.; Jin, S. Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chem. Mater. 2007, 19, 3238–3243.

    Article  Google Scholar 

  18. Szczech, J. R.; Jin, S. Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning. J. Mater. Chem. 2010, 20, 1375–1382.

    Article  Google Scholar 

  19. Song, Y. P.; Schmitt, A. L.; Jin, S. Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 2007, 7, 965–969.

    Article  Google Scholar 

  20. Gao, Y.; Zhou, Y. S.; Qian, M.; Xie, Z. Q.; Xiong, W.; Luo, H. F.; Jiang, L.; Lu, Y. F. Fast growth of branched nickel monosilicide nanowires by laser-assisted chemical vapor deposition. Nanotechnology 2011, 22, 235602–235606.

    Article  Google Scholar 

  21. Fan, X.; Zhang, H.; Du, N.; Yang, D. R. Phase-controlled synthesis of nickel silicide nanostructures. Mater. Res. Bull. 2012, 47, 3797–3803.

    Article  Google Scholar 

  22. Kim, J.; Shin, D. H.; Lee, E. S.; Han, C. S.; Park, Y. C. Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2007, 90, 253103.

    Article  Google Scholar 

  23. Liu, C. Y.; Li, W. S.; Chu, L. W.; Lu, M. Y.; Tsai, C. J.; Chen, L. J. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters. Nanotechnology 2011, 22, 055603.

    Article  Google Scholar 

  24. Han, X. L.; Larrieu, G.; Dubois, E.; Cristiano, F. Carrier injection at silicide/silicon interfaces in nanowire based-nanocontacts. Surf. Sci. 2012, 606, 836–839.

    Article  Google Scholar 

  25. Hsu, H. F.; Huang, W. R.; Chen, T. H.; Wu, H. Y.; Chen, C. A. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction. Nanoscale Res. Lett. 2013, 8, 224–230.

    Article  Google Scholar 

  26. Huang, Z. P.; Fang, H.; Zhu, J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 2007, 19, 744–748.

    Article  Google Scholar 

  27. Mikhael, B.; Elise, B.; Xavier, M.; Sebastian, S.; Johann, M.; Laetitia, P. New silicon architectures by gold-assisted chemical etching. ACS Appl. Mater. Inter. 2011, 3, 3866–3873.

    Article  Google Scholar 

  28. d’Heurle, F.; Petersson, S. C.; Stolt, L.; Strizker, B. Diffusion in intermetallic compounds with the CaF2 structure: A marker study of the formation of NiSi2 thin films. J. Appl. Phys. 1982, 53, 5678–5681.

    Article  Google Scholar 

  29. Bennett, P. A.; He, Z. A.; Smith, D. J.; Ross, F. M. Endotaxial silicide nanowires: A review. Thin Solid Films 2011, 519, 8434–8440.

    Article  Google Scholar 

  30. Fujitani, H. First-principles study of the stability of the NiSi2/Si(111) interface. Phys. Rev. B 1998, 57, 8801–8804.

    Article  Google Scholar 

  31. Jiang, S. H.; Xin, Q. Q.; Chen, Y. W.; Lou, H.; Lv, Y. X.; Zeng, W. Preparation of NiSi2 nanowires with low resistivity by reaction between Ni coating and silicon nanowires. Appl. Phys. Express 2009, 2, 075005.

    Article  Google Scholar 

  32. Juliesa, B. A.; Knoesena, D.; Pretoriusb, R.; Adams, D. A study of the NiSi to NiSi2 transition in the Ni-Si binary system. Thin Solid Films 1999, 347, 201–207.

    Article  Google Scholar 

  33. Chen, Y.; Lin, Y. C.; Huang, C. W.; Wang, C. W.; Chen, L. J.; Wu, W. W.; Huang, Y. Kinetic competition model and size-dependent phase selection in 1-D nanostructures. Nano Lett. 2012, 12, 3115–3120.

    Article  Google Scholar 

  34. Chiu, W. L.; Chiu, C. H.; Chen, J. Y.; Huang, C. W.; Huang, Y. T.; Lu, K. C.; Hsin, C. L.; Yeh, P. H.; Wu, W. W. Single-crystalline δ-Ni2Si nanowires with excellent physical properties. Nanoscale Res. Lett. 2013, 8, 290–294.

    Article  Google Scholar 

  35. Kim, C. J.; Kang, K.; Woo, Y. S.; Ryu, K. G.; Moon, H.; Kim, J. M.; Zang, D. S.; Jo, M. H. Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Adv. Mater. 2007, 19, 3637–3642.

    Article  Google Scholar 

  36. Kim, J.; Lee, E. S.; Han, C. S.; Kang, Y.; Kim, D.; Anderson, W. A. Observation of Ni silicide formations and field emission properties of Ni silicide nanowires. Microelectron. Eng. 2008, 85, 1709–1712.

    Article  Google Scholar 

  37. Liu, Z. H.; Zhang, H.; Wang, L.; Yang, D. R. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil. Nanotechnology 2008, 19, 375602.

    Article  Google Scholar 

  38. Lee, S.; Yoon, J.; Koo, B.; Shin, D. H.; Koo, J. H.; Lee, C. J.; Kim, Y. W.; Kim, H.; Lee, T. Formation of vertically-aligned cobalt silicide nanowire arrays through a solid-state reaction. Nanotechnol. IEEE Trans. 2013, 12, 704–711.

    Article  Google Scholar 

  39. Lu, C. M.; Hsu, H. F.; Lu, K. C. Growth of single-crystalline cobalt silicide nanowires and their field emission property. Nanoscale Res. Lett. 2013, 8, 308–313.

    Article  Google Scholar 

  40. Liang, Y. H.; Yu, S. Y.; Hsin, C. L.; Huang, C. W.; Wu, W. W. Growth of single-crystalline cobalt silicide nanowires with excellent physical properties. J. Appl. Phys. 2011, 110, 074302.

    Article  Google Scholar 

  41. Lin, H. K.; Tzeng, Y. F.; Wang, C. H.; Tai, N. H.; Lin, I. N.; Lee, C. Y.; Chiu, H. T. Ti5Si3 nanowire and its field emission property. Chem. Mater. 2008, 20, 2429–2431.

    Article  Google Scholar 

  42. Xiang, B.; Wang, Q. X.; Wang, Z.; Zhang, X. Z.; Liu, L. Q.; Xu, J.; Yu, D. P. Synthesis and field emission properties of TiSi2 nanowires. Appl. Phys. Lett. 2005, 86, 243103–243106.

    Article  Google Scholar 

  43. Lin, H. K.; Cheng, H. A.; Lee, C. Y.; Chiu, H. T. Chemical vapor deposition of TiSi nanowires on C54 TiSi2 thin film: An amorphous titanium silicide interlayer assisted nanowire growth. Chem. Mater. 2009, 21, 5388–5396.

    Article  Google Scholar 

  44. Fang, X. S.; Bando, Y.; Gautam, U. K.; Ye, C. H.; Golberg, D. Inorganic semiconductor nanostructures and their field-emission applications. J. Mater. Chem. 2008, 18, 509–522.

    Article  Google Scholar 

  45. Araki, H.; Katayama, T.; Yoshino, K. Field emission from aligned carbon nanotubes prepared by thermal chemical vapor deposition of Fe-phthalocyanine. Appl. Phys. Lett. 2001, 79, 2636–2639.

    Article  Google Scholar 

  46. Wu, S. L.; Deng, J. H.; Zhang, T.; Zheng, R. T.; Cheng, G. A. Tunable synthesis of carbon nanosheet/silicon nanowire hybrids for field emission applications. Diam. Relat. Mater. 2012, 26, 83–88.

    Article  Google Scholar 

  47. Deng, J. H.; Yu, B.; Li, G. Z.; Hou, X. G.; Zhao, M. L.; Li, D. J.; Ting, R. Z.; Cheng, G. A. Self-assembled growth of multi-layer graphene on planar and nanostructured substrates and its field emission properties. Nanoscale 2013, 5, 12388–12393.

    Article  Google Scholar 

  48. Ahmad, M.; Rasool, K.; Rafiq, M. A.; Hasan, M. M. Enhanced and persistent photoconductivity in vertical silicon nanowires and ZnS nanoparticles hybrid devices. Appl. Phys. Lett. 2012, 101, 223103.

    Article  Google Scholar 

  49. Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P. Silver hierarchical bowl-like array: Synthesis, superhydrophobicity, and optical properties. Langmuir 2007, 23, 9802–9807.

    Article  Google Scholar 

  50. Huang, X. J.; Lee, J. H.; Lee, J. W.; Yoon, J. B.; Choi, Y. K. A one-step route to a perfectly ordered wafer-scale microbowl array for size-dependent superhydrophobicity. Small 2008, 4, 211–216.

    Article  Google Scholar 

  51. Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.

    Article  Google Scholar 

  52. Wenzel, R. N. Surface roughness and contact angle. J. Phys. Colloid Chem. 1949, 53, 1466–1467.

    Article  Google Scholar 

  53. Extrand, C. W. Contact angles and hysteresis on surfaces with chemically heterogeneous islands. Langmuir 2003, 19, 3793–3796.

    Article  Google Scholar 

  54. Wang, J. H.; Bratko, D.; Luzar, A. Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach. Proc. Natl. Acad. Sci. USA 2011, 108, 6374–6379.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoliang Cheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, C., Cheng, S. Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures. Nano Res. 7, 1592–1603 (2014). https://doi.org/10.1007/s12274-014-0519-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0519-7

Keywords

Navigation