Skip to main content
Log in

Germanium nanowire synthesis using a localized heat source and a comparison to synthesis in a uniform temperature environment

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, we compare the synthesis of germanium nanowires (GeNWs) using a highly localized heat source with GeNWs synthesized in a uniform temperature environment. With the exception of thermal environment, identical synthesis parameters were maintained in all experiments. The localized heat source, a suspended silicon microscale heater, enabled site-specific synthesis and thus the direct integration of GeNWs which is presented for the first time. The effect of heat source implementation and local temperature gradients on the resulting nanowires is assessed in terms of resulting nanowire geometry, growth rate, and quality. Overall, we note a reduction in growth rate and elevated kinking levels in locally synthesized nanowires when compared to nanowires synthesized in uniform temperature processes. The taper which typically characterizes GeNWs, however, is significantly reduced. Finally, we explore branching behavior which hints of instabilities in the synthesis process as nanowires grow away from the heat source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

References

  1. C.M. Lieber and Z.L. Wang: Functional nanowires. MRS Bull. 32, 99 (2007).

    Article  CAS  Google Scholar 

  2. O. Englander, D. Christensen, and L. Lin: Local synthesis of silicon nanowires and carbon nanotubes on microbridges. Appl. Phys. Lett. 82, 4797 (2003).

    Article  CAS  Google Scholar 

  3. B.D. Sosnowchik, L. Lin, and O. Englander: Localized heating induced chemical vapor deposition for one-dimensional nanostructure synthesis. J. Appl. Phys. 107, 051101 (2010).

    Article  CAS  Google Scholar 

  4. E.O. Sunden, T.L. Wright, J. Lee, W.P. King, and S. Graham: Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever. Appl. Phys. Lett. 88, 033107 (2006).

    Article  CAS  Google Scholar 

  5. T. Kawano, D. Christensen, S.P. Chen, C.Y. Cho, and L.W. Lin: Formation and characterization of silicon/carbon nanotube/silicon heterojunctions by local synthesis and assembly. Appl. Phys. Lett. 89, 163510 (2006).

    Article  CAS  Google Scholar 

  6. W.C. Lin, Y.J. Yang, G.W. Hsieh, C.H. Tsai, C.C. Chen, and C.C. Liang: Selective local synthesis of nanowires on a microreactor chip. Sens. Actuators, A 130, 625 (2006).

    Article  CAS  Google Scholar 

  7. S. Dittmer, O.A. Nerushev, and E.E.B Campbell: Low ambient temperature CVD growth of carbon nanotubes. Appl. Phys. A 84, 243 (2006).

    Article  CAS  Google Scholar 

  8. T. Kawano, H.C. Chiamori, M. Suter, Q. Zhou, B.D. Sosnowchik, and L.W. Lin: An electrothermal carbon nanotube gas sensor. Nano Lett. 7, 3686 (2007).

    Article  CAS  Google Scholar 

  9. S. Dittmer, S. Mudgal, O.A. Nerushev, and E.E.B Campbell: Local heating method for growth of aligned carbon nanotubes at low ambient temperature. Low Temp. Phys. 34, 834 (2008).

    Article  CAS  Google Scholar 

  10. M.S. Haque, K.B.K Teo, N.L. Rupensinghe, S.Z. Ali, I. Haneef, S. Maeng, J. Park, F. Udrea, and W.I. Milne: On-chip deposition of carbon nanotubes using CMOS microhotplates. Nanotechnology 19, 025607 (2008).

    Article  CAS  Google Scholar 

  11. T. Xu, J. Miao, H. Li, and Z. Wang: Local synthesis of aligned carbon nanotube bundle arrays by using integrated micro-heaters for interconnect applications. Nanotechnology 29, 295303 (2009).

    Article  CAS  Google Scholar 

  12. D.Y. Kim, J.H. Choi, A.R. Zoulkarneev, M.H. Yang, I.T. Han, H.J. Kim, S.I. Kim, C.W. Baik, J.H. Park, J.B. Yoo, and J.M. Kim: Selective formation of carbon nanotubes and its application to field-emitter arrays. IEEE Electron Device Lett. 30, 709 (2009).

    Article  CAS  Google Scholar 

  13. O. Englander, D. Christensen, and L.W. Lin: The integration of nanowires and nanotubes with microstructures. Int. J. Mater. Prod. Technol. 34, 77 (2009).

    Article  CAS  Google Scholar 

  14. O. Englander, D. Christensen, J. Kim, L.W. Lin, and S.J.S Morris: Electric-field assisted growth and self-assembly of intrinsic silicon nanowires. Nano Lett. 5, 705 (2005).

    Article  CAS  Google Scholar 

  15. O. Englander, D. Christensen, J. Kim, and L.W. Lin: Post-processing techniques for locally self-assembled silicon nanowires. Sens. Actuators, A 135, 10 (2007).

    Article  CAS  Google Scholar 

  16. K. Molhave, B.A. Wacaser, D.H. Petersen, J.B. Wagner, L. Samuelson, and P. Boggild: Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy. Small 4, 1741 (2008).

    Article  CAS  Google Scholar 

  17. C. Kallesøe, C.Y. Wen, K. Mølhave, P. Bøggild, and F.M. Ross: Measurement of local Si-nanowire growth kinetics using in situ transmission electron microscopy of heated cantilevers. Small 6, 2058 (2010).

    Article  CAS  Google Scholar 

  18. C.B. Jin, J.E. Yang, and M.H. Jo: Shape-controlled growth of single-crystalline Ge nanostructures. Appl. Phys. Lett. 88, 193105 (2006).

    Article  CAS  Google Scholar 

  19. H. Adhikari, A.F. Marshall, C.E.D Chidsey, and P.C. McIntyre: Germanium nanowire epitaxy: Shape and orientation control. Nano Lett. 6, 318 (2006).

    Article  CAS  Google Scholar 

  20. H. Jagannathan, M. Deal, Y. Nishi, J. Woodruff, C. Chidsey, and P.C. McIntyre: Nature of germanium nanowire heteroepitaxy on silicon substrates. J. Appl. Phys. 100, 024318 (2006).

    Article  CAS  Google Scholar 

  21. S. Kodambaka, J. Tersoff, M.C. Reuter, and F.M. Ross: Germanium nanowire growth below the eutectic temperature. Science 316, 729 (2007).

    Article  CAS  Google Scholar 

  22. H. Adhikari, A.F. Marshall, I.A. Goldthorpe, C.E.D Chidsey, and P.C. McIntyre: Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature. ACS Nano. 1, 415 (2007).

    Article  CAS  Google Scholar 

  23. B.W. Chui, M. Asheghi, Y.S. Ju, K.E. Goodson, T.W. Kenny, and H.J. Mamin: Intrinsic-carrier thermal runaway in silicon microcantilevers. Microscale Thermophys. Eng. 3, 217 (1999).

    Article  Google Scholar 

  24. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang, and C.M. Lieber: Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214 (2001).

    Article  CAS  Google Scholar 

  25. T.I. Kamins, X. Li, R.S. Williams, and X. Liu: Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 4, 503 (2004).

    Article  CAS  Google Scholar 

  26. W. Lu and C.M. Lieber: Semiconductor nanowires. J. Phys. D: Appl. Phys. 39, R387 (2006).

    Article  CAS  Google Scholar 

  27. P. Madras, E. Dailey, and J. Drucker: Kinetically induced kinking of vapor-liquid-solid grown epitaxial Si nanowires. Nano Lett. 9, 3826 (2009).

    Article  CAS  Google Scholar 

  28. S.A. Dayeh and S.T. Picraux: Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. Nano Lett. 10, 4032 (2010).

    Article  CAS  Google Scholar 

  29. F.M. Ross: Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 73, 1 (2010).

    Article  CAS  Google Scholar 

  30. H.S. Cho and T.I. Kamins: In situ control of Au-catalyzed chemical vapor deposited (CVD) Ge nanocone morphology by growth temperature variation. J. Cryst. Growth 312, 2494 (2010).

    Article  CAS  Google Scholar 

  31. T.Y. Tan, N. Li, and U. Gosele: Is there a thermodynamic size limit of nanowires grown by the vapor-liquid-solid process? Appl. Phys. Lett. 83, 1199 (2003).

    Article  CAS  Google Scholar 

  32. Z. Chen and C.B. Cao: Effect of size in nanowires grown by the vapor-liquid-solid mechanism. Appl. Phys. Lett. 88, 3 (2006).

    Google Scholar 

  33. N. Li, T.Y. Tan, and U. Gosele: Chemical tension and global equilibrium in VLS nanostructure growth process: From nanohillocks to nanowires. Appl. Phys. A 86, 433 (2007).

    Article  CAS  Google Scholar 

  34. V. Schmidt, S. Senz, and U. Gosele: Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism. Phys. Rev. B 75, 045335 (2007).

    Article  CAS  Google Scholar 

  35. B.A. Wacaser, K.A. Dick, J. Johansson, M.T. Borgstrom, K. Deppert, and L. Samuelson: Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv. Mater. 21, 153 (2009).

    Article  CAS  Google Scholar 

  36. K. Tamaru, M. Boudart, and H. Taylor: The thermal decomposition of Germane. I. Kinetics. J. Phys. Chem. 59, 801 (1955).

    Article  CAS  Google Scholar 

  37. L.H. Hall: Thermal-decomposition of germane. J. Electrochem. Soc. 119, 1593 (1972).

    Article  CAS  Google Scholar 

  38. J. Xiang, W. Lu, Y.J. Hu, Y. Wu, H. Yan, and C.M. Lieber: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489 (2006).

    Article  CAS  Google Scholar 

  39. R.S. Wagner and C.J. Doherty: Mechanism of branching and kinking during vls crystal growth. J. Electrochem. Soc. Solid State Sci. 115, 93 (1968).

    CAS  Google Scholar 

  40. B. Tian, P. Xie, T.J. Kempa, D.C. Bell, and C.M. Lieber: Single-crystalline kinked semiconductor nanowire superstructures. Nat Nano. 4, 824 (2009).

    Article  CAS  Google Scholar 

  41. G. Lee, S.Y. Woo, J.E. Yang, D. Lee, C.J. Kim, and M.H. Jo: Directionally integrated VLS nanowire growth in a local temperature gradient. Angew. Chem. Int. Ed. 48, 7366 (2009).

    Article  CAS  Google Scholar 

  42. V.G. Dubrovskii and N.V. Sibirev: General form of the dependences of nanowire growth rate on the nanowire radius. J. Cryst. Growth 304, 504 (2007).

    Article  CAS  Google Scholar 

  43. Z. Chen and C.B. Cao: Effect of size in nanowires grown by the vapor-liquid-solid mechanism. Appl. Phys. Lett. 88, 143118 (2006).

    Article  CAS  Google Scholar 

  44. A. Reguer and H. Dallaporta: Growth study of silicon nanowires by electron microscopies. Mater. Sci. Semicond. Process. 12, 44 (2009).

    Article  CAS  Google Scholar 

  45. A.D. Gamalski, J. Tersoff, R. Sharma, C. Ducati, and S. Hofmann: Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett. 10, 2972 (2010).

    Article  CAS  Google Scholar 

  46. E. Sutter and P. Sutter: Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires. Nano Lett. 8, 411 (2008).

    Article  CAS  Google Scholar 

  47. E.A. Sutter and P.W. Sutter: Size-dependent phase diagram of nanoscale alloy drops used in vapor-liquid-solid growth of semiconductor nanowires. ACS Nano. 4, 4943 (2010).

    Article  CAS  Google Scholar 

  48. T. Kawashima, T. Mizutani, T. Nakagawa, H. Torii, T. Saitoh, K. Komori, and M. Fujii: Control of surface migration of gold particles on Si nanowires. Nano Lett. 8, 362 (2007).

    Article  CAS  Google Scholar 

  49. P. Gentile, T. David, F. Dhalluin, D. Buttard, N. Pauc, M.D. Hertog, P. Ferret, and T. Baron: The growth of small diameter silicon nanowires to nanotrees. Nanotechnology 19, 125608 (2008).

    Article  CAS  Google Scholar 

  50. F. Dhalluin, P.J. Desre, M.I. den Hertog, J.L. Rouviere, P. Ferret, P. Gentile, and T. Baron: Critical condition for growth of silicon nanowires. J. Appl. Phys. 102, 094906 (2007).

    Article  CAS  Google Scholar 

  51. E.J. Schwalbach and P.W. Voorhees: Phase equilibrium and nucleation in vls-grown nanowires. Nano Lett. 8, 3739 (2008).

    Article  CAS  Google Scholar 

  52. C. J. Redcay: The localized synthesis of silicon and germanium nanowires and a comparison to the bulk processes. MS Thesis. Florida State University, Tallahassee (2011).

    Google Scholar 

Download references

Acknowledgment

This work was completed with the support of the Florida State University’s start up funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ongi Englander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redcay, C.J., Englander, O. Germanium nanowire synthesis using a localized heat source and a comparison to synthesis in a uniform temperature environment. Journal of Materials Research 26, 2215–2223 (2011). https://doi.org/10.1557/jmr.2011.181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.181

Navigation