Skip to main content
Log in

Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 27 January 2017

Abstract

Position controlled nanowire growth is important for nanowire-based optoelectronic components which rely on light emission or light absorption. For solar energy harvesting applications, dense arrays of nanowires are needed; however, a major obstacle to obtaining dense nanowire arrays is seed particle displacement and coalescing during the annealing stage prior to nanowire growth. Here, we explore three different strategies to improve pattern preservation of large-area catalyst particle arrays defined by nanoimprint lithography for nanowire growth. First, we see that heat treating the growth substrate prior to nanoimprint lithography improves pattern preservation. Second, we explore the possibility of improving pattern preservation by fixing the seed particles in place prior to annealing by modifying the growth procedure. And third, we show that a SiN x growth mask can fully prevent seed particle displacement. We show how these strategies allow us to greatly improve the pattern fidelity of grown InP nanowire arrays with dimensions suitable for solar cell applications, ultimately achieving 100% pattern preservation over the sampled area. The generic nature of these strategies is supported through the synthesis of GaAs and GaP nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomioka, K.; Yoshimura, M.; Fukui, T. A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189–192.

    Article  Google Scholar 

  2. Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

    Article  Google Scholar 

  3. Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

    Article  Google Scholar 

  4. LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. et al. III-V nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi-RRL 2013, 7, 815–830.

    Article  Google Scholar 

  5. Polman, A.; Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 2012, 11, 174–177.

    Article  Google Scholar 

  6. Anttu, N.; Abrand, A.; Asoli, D.; Heurlin, M.; Åberg, I.; Samuelson, L.; Borgström, M. Absorption of light in InP nanowire arrays. Nano Res. 2014, 7, 816–823.

    Article  Google Scholar 

  7. Chen, M. Y.; Nakai, E.; Tomioka, K.; Fukui, T. Application of free-standing InP nanowire arrays and their optical properties for resource-saving solar cells. Appl. Phys. Express 2015, 8, 012301.

    Article  Google Scholar 

  8. Hu, L.; Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 2007, 7, 3249–3252.

    Article  Google Scholar 

  9. Kupec, J.; Stoop, R. L.; Witzigmann, B. Light absorption and emission in nanowire array solar cells. Opt. Express 2010, 18, 27589–27605.

    Article  Google Scholar 

  10. Anttu, N.; Xu, H. Q. Coupling of light into nanowire arrays and subsequent absorption. J. Nanosci. Nanotechno. 2010, 10, 7183–7187.

    Article  Google Scholar 

  11. Mårtensson, T.; Borgström, M.; Seifert, W.; Ohlsson, B. J.; Samuelson, L. Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology 2003, 14, 1255–1258.

    Article  Google Scholar 

  12. Mårtensson, T.; Carlberg, P.; Borgström, M.; Montelius, L.; Seifert, W.; Samuelson, L. Nanowire arrays defined by nanoimprint lithography. Nano Lett. 2004, 4, 699–702.

    Article  Google Scholar 

  13. Fan, H. J.; Werner, P.; Zacharias, M. Semiconductor nanowires: From self-organization to patterned growth. Small 2006, 2, 700–717.

    Article  Google Scholar 

  14. Fuhrmann, B.; Leipner, H. S.; Höche, H.-R.; Schubert, L.; Werner, P.; Gösele, U. Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 2005, 5, 2524–2527.

    Article  Google Scholar 

  15. Madaria, A. R.; Yao, M. Q.; Chi, C. Y.; Huang, N. F.; Lin, C. X.; Li, R. J.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. W. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth. Nano Lett. 2012, 12, 2839–2845.

    Article  Google Scholar 

  16. Kauppinen, C.; Haggren, T.; Kravchenko, A.; Jiang, H.; Huhtio, T.; Kauppinen, E.; Dhaka, V.; Suihkonen, S.; Kaivola, M.; Lipsanen, H. et al. A technique for large-area position-controlled growth of GaAs nanowire arrays. Nanotechnology 2016, 27, 1356011.

    Article  Google Scholar 

  17. Munshi, A. M.; Dheeraj, D. L.; Fauske, V. T.; Kim, D. C.; Huh, J.; Reinertsen, J. F.; Ahtapodov, L.; Lee, K. D.; Heidari, B.; van Helvoort, A. T. J. et al. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography. Nano Lett. 2014, 14, 960–966.

    Article  Google Scholar 

  18. Pierret, A.; Hocevar, M.; Diedenhofen, S. L.; Algra, R. E.; Vlieg, E.; Timmering, E. C.; Verschuuren, M. A.; Immink, G. W. G.; Verheijen, M. A.; Bakkers, E. P. A. M. Generic nano-imprint process for fabrication of nanowire arrays. Nanotechnology 2010, 065305.

    Google Scholar 

  19. Jam, R. J.; Heurlin, M.; Jain, V.; Kvennefors, A.; Graczyk, M.; Maximov, I.; Borgström, M. T.; Pettersson, H.; Samuelson, L. III-V nanowire synthesis by use of electrodeposited gold particles. Nano Lett. 2015, 15, 134–138.

    Article  Google Scholar 

  20. Eriksson, T.; Yamada, S.; Krishnan, P. V.; Ramasamy, S.; Heidari, B. High volume nanoimprint lithography on III/V substrates: Imprint fidelity and stamp lifetime. Microelectron. Eng. 2011, 88, 293–299.

    Article  Google Scholar 

  21. Borgström, M. T.; Wallentin, J.; Trägårdh, J.; Ramvall, P.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K. In situ etching for total control over axial and radial nanowire growth. Nano Res. 2010, 3, 264–270.

    Article  Google Scholar 

  22. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

    Article  Google Scholar 

  23. Hilner, E.; Lundgren, E.; Mikkelsen, A. Surface structure and morphology of InAs(111)B with/without gold nanoparticles annealed under arsenic or atomic hydrogen flux. Surf. Sci. 2010, 604, 354–360.

    Article  Google Scholar 

  24. Zakharov, A. A.; Mårsell, E.; Hilner, E.; Timm, R.; Andersen, J. N.; Lundgren, E.; Mikkelsen, A. Manipulating the dynamics of self-propelled gallium droplets by gold nanoparticles and nanoscale surface morphology. ACS Nano 2015, 9, 5422–5431.

    Article  Google Scholar 

  25. Anttu, N.; Xu, H. Q. Efficient light management in vertical nanowire arrays for photovoltaics. Opt. Express 2013, 21, A558–A575.

    Article  Google Scholar 

  26. Liu, H. S.; Cui, Y.; Ishida, K.; Jin, Z. P. Thermodynamic reassessment of the Au–In binary system. Calphad 2003, 27, 27–37.

    Article  Google Scholar 

  27. Piotrowska, A.; Auvray, P.; Guivarc’h, A.; Pelous, G.; Henoc, P. On the formation of binary compounds in Au/InP system. J. Appl. Phys. 1981, 52, 5112–5117.

    Article  Google Scholar 

  28. Weizer, V. G.; Fatemi, N. S. Contact spreading and the Au3In-to-Au9In4 transition in the Au-InP system. J. Appl. Phys. 1990, 68, 2275–2284.

    Article  Google Scholar 

  29. Fatemi, N. S.; Weizer, V. G. The kinetics of the Au-InP interaction. J. Appl. Phys. 1990, 67, 1934–1939.

    Article  Google Scholar 

  30. Wada, O. Thermal reaction of gold metallization on InP. J. Appl. Phys. 1985, 57, 1901–1909.

    Article  Google Scholar 

  31. Borg, R. J.; Dienes, G. J. An Introduction to Solid State Diffusion; Academic Press, Inc.: San Diego, CA, 1988.

    Google Scholar 

  32. Tomioka, K.; Tanaka, T.; Hara, S.; Hiruma, K.; Fukui, T. III–V nanowires on Si substrate: Selective-area growth and device applications. IEEE J. Sel. Top. Quant. 2011, 17, 1112–1129.

    Article  Google Scholar 

  33. Yao, M. Q.; Huang, N. F.; Cong, S.; Chi, C.-Y.; Seyedi, M. A.; Lin, Y.-T.; Cao, Y.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. W. GaAs nanowire array solar cells with axial p–i–n junctions. Nano Lett. 2014, 14, 3293–3303.

    Article  Google Scholar 

  34. Zhang, Y. Y.; Wu, J.; Aagesen, M.; Holm, J.; Hatch, S.; Tang, M. C.; Huo, S. G.; Liu, H. Y. Self-catalyzed ternary core–shell GaAsP nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett. 2014, 14, 4542–4547.

    Article  Google Scholar 

  35. Russo-Averchi, E.; Vukajlovic Plestina, J.; Tütüncüoglu, G.; Matteini, F.; Dalmau-Mallorquí, A.; de la Mata, M.; Rüffer, D.; Potts, H. A.; Arbiol, J.; Conesa-Boj, S. et al. High yield of GaAs nanowire arrays on Si mediated by the pinning and contact angle of Ga. Nano Lett. 2015, 15, 2869–2874.

    Article  Google Scholar 

  36. Spurgeon, J. M.; Plass, K. E.; Kayes, B. M.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Repeated epitaxial growth and transfer of arrays of patterned, vertically aligned, crystalline Si wires from a single Si(111) substrate. Appl. Phys. Lett. 2008, 93, 032112.

    Article  Google Scholar 

  37. Kendrick, C. E.; Redwing, J. M. The effect of pattern density and wire diameter on the growth rate of micron diameter silicon wires. J. Cryst. Growth 2011, 337, 1–6.

    Article  Google Scholar 

  38. Nowzari, A.; Heurlin, M.; Jain, V.; Storm, K.; Hosseinnia, A.; Anttu, N.; Borgström, M. T.; Pettersson, H.; Samuelson, L. A comparative study of absorption in vertically and laterally oriented InP core–shell nanowire photovoltaic devices. Nano Lett. 2015, 15, 1809–1814.

    Article  Google Scholar 

  39. Berg, A.; Lenrick, F.; Vainorius, N.; Beech, J. P.; Wallenberg, L. R.; Borgström, M. T. Growth parameter design for homogeneous material composition in ternary GaxIn1−xP nanowires. Nanotechnology 2015, 26, 435601.

    Article  Google Scholar 

  40. Dalacu, D.; Kam, A.; Austing, D. G.; Wu, X. H.; Lapointe, J.; Aers, G. C.; Poole, P. J. Selective-area vapour–liquid–solid growth of InP nanowires. Nanotechnology 2009, 20, 395602.

    Article  Google Scholar 

  41. Stringfellow, G. B. Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd ed.; Academic Press: San Diego, CA, 1999.

    Google Scholar 

  42. Mishra, A.; Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Kim, Y.; Joyce, H. J.; Gao, Q.; Tan, H. H. et al. Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires. Appl. Phys. Lett. 2007, 91, 263104.

    Article  Google Scholar 

  43. Pemasiri, K.; Montazeri, M.; Gass, R.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. et al. Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. Nano Lett. 2009, 9, 648–654.

    Article  Google Scholar 

  44. Bao, J. M.; Bell, D. C.; Capasso, F.; Erdman, N.; Wei, D. G.; Fröberg, L.; Mårtensson, T.; Samuelson, L. Nanowire-induced Wurtzite InAs thin film on zinc-blende InAs substrate. Adv. Mater. 2009, 21, 3654–3658.

    Article  Google Scholar 

  45. Mattila, M.; Hakkarainen, T.; Mulot, M.; Lipsanen, H. Crystal-structure-dependent photoluminescence from InP nanowires. Nanotechnology 2006, 17, 1580–1583.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus T. Borgström.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12274-016-1379-0.

Electronic supplementary material

12274_2016_1165_MOESM1_ESM.pdf

Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otnes, G., Heurlin, M., Graczyk, M. et al. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 9, 2852–2861 (2016). https://doi.org/10.1007/s12274-016-1165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1165-z

Keywords

Navigation