Skip to main content
Log in

RuIn3-xSnx, RuIn3-xZnx, and Ru1-yIn3—new thermoelectrics based on the semiconductor RuIn3

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A systematic investigation of the intermetallic phase Ru1-yIn3 (0 ≤ y ≤ 0.025) and its substitution derivatives RuIn3-xSnx and RuIn3-xZnx (x = 0.01, 0.025, 0.05, and 0.1) is performed. The samples were prepared from a liquid–solid reaction of components with subsequent spark plasma sintering treatment. Ru1-yIn3 exhibits n- and p-type behavior crossing over from low to high temperatures. Substitution of indium by tin or zinc up to 2.5 at.% leads to an increase of the charge carrier concentration, with negative (Sn) or positive (Zn) Seebeck values, respectively. The electrical resistivity was P changed from semiconductor- to metal-like properties by substitution, whereas the thermal conductivity was reduced down to 50% of that of RuIn3. Higher values of the thermoelectric figure of merit were achieved by chemical substitution (RuIn3-xSnx, RuIn3-xZnx), opening up a possibility for tuning the thermoelectric properties in this class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

REFERENCES

  1. S. Paschen, C. Godart, and Yu. Grin: Recent progress in the development of thermoelectric materials with complex crystal structures, in Complex Metallic Alloys, edited by J.M. Dubois and E. Belin-Ferré (Wiley-VCH, Weinheim, Germany, 2011), p. 365.

    Google Scholar 

  2. U. Häussermann, M. Boström, P. Viklund, Ö. Rapp, and T. Björnängen: FeGa3 and RuGa3: Semiconducting intermetallic compounds. J. Solid State Chem. 165, 94 (2002).

    Article  Google Scholar 

  3. K. Schubert, H.L. Lukas, H. Meissner, and S. Bhan: Zum Aufbau der Systeme Kobalt-Gallium, Palladium-Gallium, Palladium-Zinn und verwandter Legierungen. Z. Metallk. 50, 534 (1959).

    CAS  Google Scholar 

  4. H. Holleck, H. Nowotny, and F. Benesovsky: Die Kristallstruktur von ThGa2 und RuIn3. Monatsh. Chem. 95, 1386 (1964).

    Article  CAS  Google Scholar 

  5. D. Bogdanov, K. Winzer, I.A. Nekrasov, and T. Pruschke: Electronic properties of the semiconductor RuIn3. J. Phys. Condens Matter 19, 232202 (2007).

    Article  Google Scholar 

  6. Y. Imai and A. Watanabe: Electronic structures of semiconducting FeGa3, RuGa3, OsGa3, and RuIn3 with the CoGa3- or the FeGa3-type structure. Intermetallics 14, 722 (2006).

    Article  CAS  Google Scholar 

  7. C.M. Bhandari and D.M. Rowe: Optimization of carrier concentration, in CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press LLC, Boca Raton, FL, 1995), p. 43.

    Google Scholar 

  8. U. Aydemir, C. Candolfi, H. Borrmann, M. Baitinger, A. Ormeci, W. Carrillo-Cabrera, C. Chubilleau, B. Lenoir, A. Dauscher, N. Oeschler, F. Steglich, and Yu. Grin: Crystal structure and transport properties of Ba8Ge433. Dalton Trans. 39, 1078 (2010).

    Article  CAS  Google Scholar 

  9. L.T.K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann, U. Burkhardt, J. Custers, A. Haghighirad, R. Höfler, K.D. Luther, F. Ritter, W. Assmus, Yu. Grin, and S. Paschen: Atomic ordering and thermoelectric properties of the n-type clathrate Ba8Ni3.5Ge42.10.4. Dalton Trans. 39, 1071 (2010).

    Article  CAS  Google Scholar 

  10. H. Zhang, H. Borrmann, N. Oeschler, C. Candolfi, W. Schnelle, M. Schmidt, U. Burkhardt, M. Baitinger, J. Zhao, and Yu. Grin: Atomic interactions in the p-type clathrate I Ba8Au5.3Ge40.7. Inorg. Chem. 50, 1250 (2011).

    Article  CAS  Google Scholar 

  11. R. Pöttgen: Preparation, crystal structure and properties of RuIn3. J. Alloy. Comp. 226, 59 (1995).

    Article  Google Scholar 

  12. R.N. Roof, Z. Fisk, and J.L. Smith: Crystal data for RuIn3. Powder Diff. 1, 20 (1986).

    Article  CAS  Google Scholar 

  13. R. Pöttgen, R. Hoffmann, and G. Kotzyba: Structure, chemical bonding and properties of CoIn3, RhIn3, and IrIn3. Z. Anorg. Allg. Chem. 624, 244 (1998).

    Article  Google Scholar 

  14. Y. Hadano, S. Narazu, M.A. Avila, T. Onimaru, and T. Takabatake: Thermoelectric and magnetic properties of a narrow-gap semiconductor FeGa3. J. Phys. Soc. Jpn. 78, 013702 (2009).

    Article  Google Scholar 

  15. G. Mahan: Good thermoelectrics. Solid State Phys. 51, 81 (1997).

    Article  Google Scholar 

  16. C. Lue, W. Lai, and Y. Kuo: Electrical and thermoelectric properties of the intermetallic FeGa3. J. Alloy. Comp. 392, 72 (2005).

    Article  CAS  Google Scholar 

  17. Y. Amagai, A. Yamamoto, T. Iida, and Y. Takanashi: Thermoelectric properties of semiconductorlike intermetallic compounds TMGa3 (TM = Fe, Ru, and Os). J. Appl. Phys. 96, 5644 (2004).

    Article  CAS  Google Scholar 

  18. D. Mandrus, V. Keppens, B.C. Sales, and J.L. Sarrao: Unusual transport and large diamagnetism in the intermetallic semiconductor RuAl2. Phys. Rev. B 58, 3712 (1998).

    Article  CAS  Google Scholar 

  19. Y. Takagiwa, Y. Matsubayashi, A. Suzumura, J.T. Okada, and K. Kimura: Thermoelectric properties of binary semiconducting intermetallic compounds Al2Ru and Ga2Ru synthesized by spark plasma sintering process. Mater. Trans. 51, 988 (2010).

    Article  CAS  Google Scholar 

  20. L. Akselrud, P. Zavalii, Yu. Grin, V. Pecharski, B. Baumgartner, and E. Wölfel: Use of the CSD program package for structure determination from powder data. Mater. Sci. Forum 133, 335 (1993).

    Article  Google Scholar 

  21. K. Koepernik and H. Eschrig: Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743 (1999).

    Article  CAS  Google Scholar 

  22. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  24. N. Marzari, S. de Gironcoli, and S. Baroni: Structure and phase stability of GaxIn1-xP solid solutions from computational alchemy. Phys. Rev. Lett. 72, 4001 (1994).

    Article  CAS  Google Scholar 

  25. V. Hlukhyy, R. Hoffmann, and R. Pöttgen: The solid solution MgxIn3-xIr–formation of the FeGa3 type up to x = 0.73 and the cementite structure with x = 0.92. Z. Anorg. Allg. Chem. 630, 68 (2004).

    Article  CAS  Google Scholar 

  26. P. Viklund, S. Lidin, P. Berastegui, and U. Häussermann: Variations of the FeGa3 structure type in the systems CoIn3-xZnx and CoGa3-xZnx. J. Solid State Chem. 165, 100 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. U. Burkhardt, Mrs. M. Eckert, and Mrs. S. Kostmann for metallographic preparation and WDXS analysis; Dr. H. Borrmann, Mr. S. Hückmann, and Dr. Y. Prots for X-ray powder diffraction experiments; Dr. G. Auffermann, Mrs. U. Schmidt, Mr. S. Schwinger, and Mrs. A. Völzke for chemical analysis; and Dr. S. Hoffmann, Mr. P. Marasas, and Mrs. S. Scharsach for thermal analysis. For measurements of several physical properties, we also acknowledge the contribution of Mr. R. Koban (LFA) and Mrs. R. Hempel-Weber (ZEM-3). H. Rosner acknowledges SPP 1386 of the Deutsche Forschungsgemeinschaft for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, M., Cardoso-Gil, R., Oeschler, N. et al. RuIn3-xSnx, RuIn3-xZnx, and Ru1-yIn3—new thermoelectrics based on the semiconductor RuIn3. Journal of Materials Research 26, 1886–1893 (2011). https://doi.org/10.1557/jmr.2011.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.153

Navigation