Skip to main content
Log in

Dielectric and electric field–induced pyroelectric behavior of (Pb0.87−0.07xBa0.10+0.07x)La0.02(Zr0.7Sn0.15Ti0.15)O3 ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

(Pb0.87−0.07xBa0.10+0.07x)La0.02(Zr0.7Sn0.15Ti0.15)O3 ceramics with 0 ≤ x ≤1 were prepared by conventional solid-state reaction process, and their dielectric and electric field–induced pyroelectric properties were systemically investigated. Compared with conventional pyroelectric materials, (Pb0.87−0.07xBa0.10+0.07x)La0.02(Zr0.7Sn0.15Ti0.15)O3 ceramics exhibited higher pyroelectric coefficient and figure of merit, which are beneficial for the development of pyroelectric devices. The specimens with x = 0.65 showed good pyroelectric properties for practical applications. When a 500 V/mm dc bias field was applied, they showed the maximum pyroelectric coefficient of 12,200 μC/m2K and the figure of merit of 106 × 10−5 Pa−0.5 at 45 °C, which are larger than those observed from conventional pyroelectric materials. Improvement of pyroelectric property is beneficial for the development of infrared detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

REFERENCES

  1. F. Jin, G.W. Auner, R. Naik, N.W. Schubring, J.V. Mantese, A.B. Catalan, and A.L. Micheli: Giant effective pyroelectric coefficients from graded ferroelectric devices. Appl. Phys. Lett. 73, 2838 (1998).

    Article  CAS  Google Scholar 

  2. J.T. Wang and C. Zhang: Pyroelectric properties of 0.7PbMg1/3(Nb0.9Ta0.1)2/3O3-0.3PbTiO3 ceramics. J. Appl. Phys. 98, 054103 (2005).

    Article  Google Scholar 

  3. L.H. Liu, X.B. Li, X. Wu, Y.J. Wang, W.N. Di, D. Lin, X.Y. Zhao, H.S. Luo, and N. Neumann: Dielectric, ferroelectric, and pyroelectric characterization of Mn-doped 0.74Pb(Mg1/3Nb2/3)O3-0.26PbTiO3 crystals for infrared detection applications. Appl. Phys. Lett. 95, 192903 (2009).

    Article  Google Scholar 

  4. C.G. Wu, Y.R. Li, J. Zhu, X.Z. Liu, and W.L. Zhang: Great enhancement of pyroelectric properties for Ba0.65Sr0.35TiO3 films on Pt–Si substrates by inserting a self-buffered layer. J. Appl. Phys. 105, 044107 (2009).

    Article  Google Scholar 

  5. Y.H. Juna, T.Y. Kima, and H.M. Jang: (Ba, Sr)TiO3 system under DC-bias field: I. Improvement on the thermostability of pyroelectric response by Zr-substitution. Ferroelectrics 193, 109 (1997).

    Article  Google Scholar 

  6. R. Watton and M.A. Todd: Induced pyroelectricity in sputtered lead scandium tantalate films and their merit for IR detector arrays. Ferroelectrics 118, 279 (1991).

    Article  CAS  Google Scholar 

  7. K. Yoon, S.C. Hwang, and D.H. Kang: Dielectric and field-induced strain behaviour of (Pb1-xBax) ZrO3 ceramics. J. Mater. Sci. 32, 17 (1997).

    Article  CAS  Google Scholar 

  8. R.W. Whatmore: Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335 (1986).

    Article  CAS  Google Scholar 

  9. P. Yang and D.A. Payne: The effect of external field symmetry on the antiferroelectric–ferroelectric phase transformation. J. Appl. Phys. 80, 4001 (1996).

    Article  CAS  Google Scholar 

  10. A. Yu. Tuflin, V.V. Shvartsman, G.M. Kaleva, and E.D. Politova: Investigation of dielectric and ferroelectric properties of the Pb(Sn,Zr,Ti)O3 ceramics. Ferroelectrics 299, 145 (2004).

    Article  CAS  Google Scholar 

  11. S.E. Park, K. Markowski, S. Yoshikawa, and L.E. Cross: Effect on electrical properties of barium and strontium additions in the lead lanthanum zirconate stannate titanate system. J. Am. Ceram. Soc. 80, 407 (1997).

    Article  CAS  Google Scholar 

  12. N. Zhang, Z. Xu, Y.J. Feng, and X. Yao: Dielectric and relaxor ferroelectric properties of Ba-doped Pb(Zr,Ti)O3 ceramics. J. Electroceram. 21, 609 (2008).

    Article  CAS  Google Scholar 

  13. Z. Ujma, J. Handerek, M. Paweeczyk, and D. Dmytrow: Phase composition and dielectric properties of lead barium zirconate solid solutions. Ferroelectrics 129, 127 (1992).

    Article  CAS  Google Scholar 

  14. Z.L. Chen, X. Yao, and L.E. Cross: Depolarization behavior and reversible pyroelectricity in lead scandium–tantalate ceramics under DC biases. Ferroelectrics 49, 213 (1983).

    Article  Google Scholar 

  15. W.L. Zhong: Ferroelectrics Physics (Science Publishing Company, Beijing, 1998), pp. 74–79.

    Google Scholar 

  16. B.P. Pokharel and D. Pandey: Dielectric studies of phase transitions in (Pb1-xBax)ZrO3. J. Appl. Phys. 88, 5364 (2000).

    Article  CAS  Google Scholar 

  17. D.S. Kang, M.S. Han, S.G. Lee, and S.H. Song: Dielectric and pyroelectric properties of barium strontium calcium titanate ceramics. J. Eur. Ceram. Soc. 23, 515 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Analytical and Testing Center of Huazhong University of Science and Technology. This work has been supported by the Graduate Student Creational Fund (HF-08-08-2011-185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglin Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Jiang, S. & Zeng, Y. Dielectric and electric field–induced pyroelectric behavior of (Pb0.87−0.07xBa0.10+0.07x)La0.02(Zr0.7Sn0.15Ti0.15)O3 ceramics. Journal of Materials Research 26, 1436–1440 (2011). https://doi.org/10.1557/jmr.2011.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.128

Navigation