Skip to main content
Log in

Thermoelectric oxide modules tested in a solar cavity-receiver

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Four-leg thermoelectric oxide modules (TOMs) consisting of two p-type (La1.98Sr0.02CuO4) and two n-type (CaMn0.98Nb0.02O3) thermoelectric (TE) legs were produced with a manufacturing quality factor between 30 and 60%. The pressed sintered TE legs revealed 90% of the theoretical density to ensure a sufficient mechanical stability of the TE modules. The legs were connected electrically in series and sandwiched thermally in parallel between two Al2O3 plates serving as absorber and cooler, respectively. A solar cavity-receiver packed with an array of TOMs was subjected to concentrated thermal radiation with peak solar radiative flux intensities exceeding 600 kW/m2. Temperature distributions in the cavity, open-circuit voltage (VOC), and maximum output power (Pmax) were measured for different external loads and solar radiative fluxes (qin). Finally, the solar-to-electricity conversion efficiency (η) was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

REFERENCES

  1. E.S. Reddy, J.G. Noudem, S. Hebert, and C. Goupil: Fabrication and properties of four-leg oxide thermoelectric modules. J. Phys. D: Appl. Phys. 38, 3751 (2005).

    Article  CAS  Google Scholar 

  2. W. Shin, N. Muruyama, K. Ikeda, and S. Sago: Thermoelectric power generation using Li-doped NiO and (Ba, Sr)PbO3 module. J. Power Sources 103, 80 (2001).

    Article  CAS  Google Scholar 

  3. R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando: A portable thermoelectric-power-generating module composed of oxide devices. J. Appl. Phys. 99, 066117 (2006).

    Article  Google Scholar 

  4. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka: Oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, 1127 (2000).

    Article  Google Scholar 

  5. A. Weidenkaff: Preparation and application of nanostructured perovskite phases. Adv. Eng. Mater. 6, 709 (2004).

    Article  CAS  Google Scholar 

  6. L. Bocher, R. Robert, M.H. Aguirre, S. Malo, S. Hébert, A. Maignan, and A. Weidenkaff: Thermoelectric and magnetic properties of perovskite-type manganate phases synthesised by ultrasonic spray combustion (USC). Solid State Sci. 10, 496 (2008).

    Article  CAS  Google Scholar 

  7. L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff: CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077 (2008).

    Article  CAS  Google Scholar 

  8. M.H. Aguirre, S. Canulescu, R. Robert, N. Homazava, D. Logvinovich, L. Bocher, T. Lippert, M. Döbeli, and A. Weidenkaff: Structure, microstructure, and high-temperature transport properties of La1-xCaxMnO3-δ thin films and polycrystalline bulk materials. J. Appl. Phys. 103, 013703 (2008).

    Article  Google Scholar 

  9. S.S. Kim, F. Yin, and Y. Kagawa: Thermoelectricity for crystallographic anisotropy controlled Bi–Te based alloys and p–n modules. J. Alloy. Comp. 419, 306 (2006).

    Article  CAS  Google Scholar 

  10. O. Yamashita and S. Sugihara: High-performance bismuth-telluride compounds with highly stable thermoelectric figure of merit. J. Mater. Sci. 40, 6439 (2005).

    Article  CAS  Google Scholar 

  11. D.M. Rowe: Thermoelectrics Handbook: Macro to Nano (Taylor & Francis Group, Boca Raton, FL, 2006), pp. 1–5.

    Google Scholar 

  12. J. Yang and T. Caillat: Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224 (2006).

    Article  CAS  Google Scholar 

  13. G.J. Snyder: Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84, 2436 (2004).

    Article  CAS  Google Scholar 

  14. S.A. Omer and D.G. Infield: Design optimization of thermoelectric devices for solar power generation. Sol. Energy Mater. Sol. Cells 53, 67 (1998).

    Article  CAS  Google Scholar 

  15. P. Tomeš, C. Suter, M. Trottmann, M.H. Aguirre, P. Haueter, A. Steinfeld, and A. Weidenkaff: Thermoelectric oxide modules (TOMs) applied in direct conversion of simulated solar radiation into electrical energy. Materials 3, 2801 (2010).

    Article  Google Scholar 

  16. C. Suter, P. Tomeš, A. Steinfeld, and A. Weidenkaff: Heat transfer and geometrical analysis of thermoelectric converters driven by concentrated solar radiation. Materials 3, 2735 (2010).

    Article  CAS  Google Scholar 

  17. S. Zhou, J. Zhao, S. Chu, and L. Shi: Synthesis, characterization and magnetic properties of lightly doped La2-xSrxCuO4 (x = 0.04) nanoparticles. Physica C 451, 38 (2007).

    Article  CAS  Google Scholar 

  18. P. Tomeš, R. Robert, M. Trottmann, L. Bocher, M.H. Aguirre, J. Hejtmánek, and A. Weidenkaff: Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module. J. Electron. Mater. 39, 1696 (2010).

    Article  Google Scholar 

  19. D.D.L. Chung: Composite Material: Science and Applications (Engineering Materials and Processes), 2nd ed. (Springer-Verlag, London, England, 2010), p. 246.

    Book  Google Scholar 

  20. M.A. Bramson: Infrared Radiation: A Handbook of Applications (Plenum Press, New York, NY, 1968).

    Book  Google Scholar 

  21. http://www.hoecherl-hackl.com/geraetedocs/E_technischeDaten_ZS.php?gername=ZS506-4.

  22. http://www.cord.edu/faculty/jensen/LabVIEW/index.htm.

  23. D. Hirsch, P.V. Zedtwitz, T. Osinga, J. Kinamore, and A. Steinfeld: A new 75 kW high-flux solar simulator for high-temperature thermal and thermochemical research. J. Sol. Energy Eng. 125, 117 (2003).

    Article  CAS  Google Scholar 

  24. J. Petrasch: Thermal modeling of solar chemical reactors: transient behavior, radiative transfer (Master thesis, ETH, Zurich, Switzerland, 2002).

    Google Scholar 

  25. M. Bauccio: ASM Metals Reference Book, 3rd ed. (ASM International, Materials Park, OH, 1997), p. 139.

    Google Scholar 

  26. S. Lemonnier, Ch. Goupil, J. Noudem, and E. Guilmeau: Four-leg Ca0.95Sm0.05MnO3 unileg thermoelectric device. J. Appl. Phys. 104, 014505 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Swiss Federal Office of Energy and Swiss National Foundation for financial support and O. Brunko, D. Alfarug, and U. Gfeller for their help with the synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Weidenkaff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomeš, P., Suter, C., Trottmann, M. et al. Thermoelectric oxide modules tested in a solar cavity-receiver. Journal of Materials Research 26, 1975–1982 (2011). https://doi.org/10.1557/jmr.2011.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.125

Navigation