Skip to main content
Log in

Photocatalytic activity enhancement of TiO2 porous thin film due to homogeneous surface modification of RuO2

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ruthenium dioxide (RuO2) was uniformly modified on TiO2 porous thin film by impregnation of Ru-contained dye on the film followed by sintering it at 450 °C to burn off organic matters and form ruthenium oxide, which is named as impregnation method. The homogenous modification of metal oxide inside porous thin film can be realized by the impregnation method, and the modification amount of RuO2 can be easily adjusted by the iteration numbers of impregnation and sintering. Appropriate amount of uniformly modified RuO2 was found to obviously enhance photocatalytic performance of TiO2 to degrade eosin Y. The photocatalysis enhancement was attributed to the shallow hole traps on the surface of nanoparticles formed by RuO2, and these traps can retard recombination of hole with electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
TABLE I
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. E. Rodriguez, R. Peche, J.M. Merino, and L.M. Camarero: Decoloring of aqueous solutions of indigocarmine dye in an acid medium by H2O2/UV advanced oxidation. Environ. Eng. Sci. 24, 363 (2007).

    Article  CAS  Google Scholar 

  2. M. Fujihira, Y. Satoh, and T. Osa: Heterogeneous photocatalytic oxidation of aromatic-compounds on TiO2. Nature 293, 206 (1981).

    Article  CAS  Google Scholar 

  3. A. FuJishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  4. S. Bakardjieva, J. Šubrt, V. Štengl, M.J. Dianez, and M.J. Sayagues: Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B 58, 193 (2005).

    Article  CAS  Google Scholar 

  5. J.F. He, Q.H. Liu, Z.H. Sun, W.S. Yan, G.B. Zhang, Z.M. Qi, P.S. Xu, Z.Y. Wu, and S.Q. Wei: High photocatalytic activity of rutile TiO2 induced by iodine doping. J. Phys. Chem. C 114, 6035 (2010).

    Article  CAS  Google Scholar 

  6. T. Berger, M. Sterrer, O. Diwald, E. Knozinger, D.T. Panayotov, L. Thompson, and J.T. Yates: Light-induced charge separation in anatase TiO2 particles. J. Phys. Chem. B 109, 6061 (2005).

    Article  CAS  Google Scholar 

  7. V. Rupa, D. Manikandan, D. Divakar, and T. Sivakumar: Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17. J. Hazard. Mater. 147, 906 (2007).

    Article  CAS  Google Scholar 

  8. J. Choi, H. Park, and M.R. Hoffmann: Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783 (2010).

    Article  CAS  Google Scholar 

  9. C. He, Y. Yu, and X.F. Hu: Influence of silver doping on the photocatalytic activity of titania films. Appl. Surf. Sci. 200, 239 (2002).

    Article  CAS  Google Scholar 

  10. J.J. Zhao, S. Sallard, B.M. Smarsly, S. Gross, M. Bertino, C. Boissiere, H.R. Chen, and J.L. Shi: Photocatalytic performances of mesoporous TiO2 films doped with gold clusters. J. Mater. Chem. 20, 2831 (2010).

    Article  CAS  Google Scholar 

  11. P. Simon, B. Pignon, B. Miao, S. Coste-Leconte, Y. Leconte, S. Marguet, P. Jegou, B. Bouchet-Fabre, C. Reynaud, and N. Herlin-Boime: N-doped titanium monoxide nanoparticles with TiO rock-salt structure, low energy band gap, and visible light activity. Chem. Mater. 22, 3704 (2010).

    Article  CAS  Google Scholar 

  12. G. Liu, C.H. Sun, S.C. Smith, L.Z. Wang, G.Q. Lu, and H.M. Cheng: Sulfur doped anatase TiO2 single crystals with a high percentage of >0 0 1= facets. J. Colloid Interface Sci. 349, 477 (2010).

    Article  CAS  Google Scholar 

  13. I.C. Kang, Q.W. Zhang, S. Yin, T. Sato, and F. Saito: Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment. Appl. Catal. B 80, 81 (2008).

    Article  CAS  Google Scholar 

  14. L.G.C. Rego, R. da Silva, J.A. Freire, R.C. Snoeberger, and V.S. Batista: Visible light sensitization of TiO2 surfaces with Alq3 complexes. J. Phys. Chem. C 114, 1317 (2010).

    Article  CAS  Google Scholar 

  15. M. Li, Z.L. Wang, H.Z. Shi, and Y. Zeng: Surface morphology, spectra and photocatalytic bactericidal effect of chlorophyll-sensitizing TiO2 crystalline phases. J. Inorg. Mater. 18, 1261 (2003).

    CAS  Google Scholar 

  16. T. Tachikawa, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, T. Ohno, K. Nishijima, Z. Miyamoto, and T. Majima: Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J. Phys. Chem. B 108, 19299 (2004).

    Article  CAS  Google Scholar 

  17. M.L. Lin, M.Y. Lo, and C.Y. Mou: PtRu nanoparticles supported on ozone-treated mesoporous carbon thin film as highly active anode materials for direct methanol fuel cells. J. Phys. Chem. C 113, 16158 (2009).

    Article  CAS  Google Scholar 

  18. S.H. Yoo and S. Park: Electrocatalytic applications of a vertical Au nanorod array using ultrathin Pt/Ru/Pt layer-by-layer coatings. Electrochim. Acta 53, 3656 (2008).

    Article  CAS  Google Scholar 

  19. J.C. Chou and C.W. Chen: Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs. IEEE Sens. J. 9, 277 (2009).

    Article  CAS  Google Scholar 

  20. T.R.I. Cataldi, G.E. De Benedetto, and A. Bianchini: Enhanced stability and electrocatalytic activity of a ruthenium-modified cobalt-hexacyanoferrate film electrode. J. Electroanal. Chem. 471, 42 (1999).

    Article  CAS  Google Scholar 

  21. G.E. De Benedetto and T.R.I. Cataldi: Highly-stabilized polynuclear indium-hexacyanoferrrate film electrodes modified by ruthenium species. Langmuir 14, 6274 (1998).

    Article  Google Scholar 

  22. M. Macherzynski, G. Milczarek, S. Mamykin, V. Romanyuk, and A. Kasuya: Electrochemical preparation of photosensitive porous n-type Si electrodes, modified with Pt and Ru nanoparticles. Electrochim. Acta 55, 4395 (2010).

    Article  CAS  Google Scholar 

  23. D.S. Yoon, J.S. Roh, S.M. Lee, and H.K. Baik: Investigation of the surface modification for Ru and RuOx films using a post-treatment method for high-dielectric applications. J. Mater. Sci.- Mater. Electron. 14, 511 (2003).

    Article  CAS  Google Scholar 

  24. J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang, and F.S. Sheu: Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1, 560 (2005).

    Article  CAS  Google Scholar 

  25. K. Kawano, H. Kosuge, N. Oshima, and H. Funakubo: Conformability of ruthenium dioxide films prepared on substrates with capacitor holes by MOCVD and modification by annealing. Electrochem. Solid-State Lett. 9, C175 (2006).

    Article  CAS  Google Scholar 

  26. S. Hrapovic and G. Jerkiewicz: Environmentally Induced Cracking of Metals, Proceedings, edited by M. Elboujdaini, E. Ghali, and W. Zheng (Canadian Inst. Min., Met. & Petr., Montreal, 2000), p. 191.

    Google Scholar 

  27. X. Yin, W. Tan, J. Zhang, Y. Weng, X. Xiao, X. Zhou, X. Li, and Y. Lin: The effect mechanism of 4-ethoxy-2-methylpyridine as an electrolyte additive on the performance of dye-sensitized solar cell. Colloids Surf. A 326, 42 (2008).

    Article  CAS  Google Scholar 

  28. Y.Z. Li, H. Zhang, Z.M. Guo, J.J. Han, X.J. Zhao, Q.N. Zhao, and S.J. Kim: Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst. Langmuir 24, 8351 (2008).

    Article  CAS  Google Scholar 

  29. X.Y. Li, D.S. Wang, G.X. Cheng, Q.Z. Luo, J. An, and Y.H. Wang: Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl. Catal. B 81, 267 (2008).

    Article  CAS  Google Scholar 

  30. C.H. Chiou, C.Y. Wu, and R.S. Juang: Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Sep. Purif. Technol. 62, 559 (2008).

    Article  CAS  Google Scholar 

  31. A.O. Ibhadon, G.M. Greenway, and Y. Yue: Photocatalytic activity of surface modified TiO2/RuO2/SiO2 nanoparticles for azo-dye degradation. Catal. Commun. 9, 153 (2008).

    Article  CAS  Google Scholar 

  32. H. Einaga, T. Ibusuki, and S. Futamura: Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds. Environ. Sci. Technol. 38, 285 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jingbo Zhang thanks Prof. A. Zaban of Bar-Ilan University, Israel for his kind and valuable suggestions. We acknowledge the financial support from the National Nature Science Foundation of China (20873162), the State Key Laboratory of Pollution Control and Resource Reuse Foundation (Nos. PCRRF09006, PCRRF08009, and PCRRY09004), and the Innovative Foundation of the Center for Molecular Science, Chinese Academy of Sciences (CMS-CX200718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiying Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Li, W., Zhang, J. et al. Photocatalytic activity enhancement of TiO2 porous thin film due to homogeneous surface modification of RuO2. Journal of Materials Research 26, 1532–1538 (2011). https://doi.org/10.1557/jmr.2011.124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.124

Navigation