Skip to main content
Log in

Interpreting the softening of nanomaterials through gradient plasticity

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Experimental and simulation studies have shown that decreasing the grain size below a critical value results in softening rather than hardening in both the yield stress and flow stress of nanomaterials. In this work, a gradient plasticity framework is presented that can capture this softening behavior by treating grain boundaries as a separate phase with a finite thickness. The theoretical expression obtained for the yield stress as a function of the grain size can capture numerous experimental data that exhibit this “normal” to “abnormal” Hall–Petch transition, and an analytical equation is obtained that can predict the grain size at which this transition occurs. Furthermore, analytical expressions are obtained for the flow stress in nanomaterials, and they are in precise agreement with atomistic simulations on nanocrystalline Cu, which predict that below a critical grain size the flow stress decreases proportional to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
TABLE II.

Similar content being viewed by others

REFERENCES

  1. P.G. Sanders, J.A. Eastman, and J.R. Weertman: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).

    Article  CAS  Google Scholar 

  2. X.D. Liu, Z.Q. Hu, and B.Z. Ding: Hall-Petch relation in nanocrystalline Fe-Mo-Si-B alloys. Nanostruct. Mater. 2, 545 (1993).

    Article  CAS  Google Scholar 

  3. T. Volpp, E. Göring, W.M. Kuschke, and E. Arzt: Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders. Nanostruct. Mater. 8, 855 (1997).

    Article  CAS  Google Scholar 

  4. J. Narayan, R.K. Venkatesan, and A. Kvit: Structure and properties of nanocrystalline zinc films. J. Nanopart. Res. 4, 265 (2002).

    Article  CAS  Google Scholar 

  5. R. Venkatesan, A. Kvit, Q. Wei, and J. Narayan: Novel tungsten carbide nanocrystalline composites by pulsed laser deposition, in Structure and Mechanical Properties of Nanophase Materials—Theory and Computer Simulations vs. Experiment, edited by D. Farkas, H. Kung, M. Mayo, H. Van Swygenhoven, and J. Weertman Mater. Res. Soc. Symp. Proc. 634, Warrendale, PA, 2000), B6.1.1.

  6. A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr. Metall. 23, 1679 (1989).

    Article  CAS  Google Scholar 

  7. G. Palumbo, U. Erb, and K.T. Aust: Triple line disclination effects on the mechanical behaviour of materials. Scr. Metall. Mater. 24, 2347 (1990).

    Article  CAS  Google Scholar 

  8. M. Zhao, J.C. Li, and Q. Jiang: Hall–Petch relationship in nanometer-size range. J. Alloy. Comp. 361, 160 (2003).

    Article  CAS  Google Scholar 

  9. L. Lu, X. Chen, X. Huang, and K. Lu: Revealing the maximum strength in nanotwinned copper. Science 323, 607 (2009).

    Article  CAS  Google Scholar 

  10. M. Meyers, A. Mishra, and D. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  11. C.S. Pande and K.P. Cooper: Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54, 689 (2009).

    Article  CAS  Google Scholar 

  12. G. Saada and G. Dirras: Chapter 90 Mechanical properties of nanograined metallic polycrystals, in Dislocations in Solids Volume 15, edited by J.P. Hirth and L. Kubin (Elsevier, Amsterdam, 2009), p. 199.

    Chapter  Google Scholar 

  13. J.E. Carsley, J. Ning, W.W. Milligan, S.A. Hackney, and E.C. Aifantis: A simple, mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostruct. Mater. 5, 441 (1995).

    Article  CAS  Google Scholar 

  14. D.A. Konstantinidis and E.C. Aifantis: On the “anomalous” hardness of nanocrystalline materials. Nanostruct. Mater. 10, 1111 (1998).

    Article  CAS  Google Scholar 

  15. K.E. Aifantis and A.A. Konstantinidis: Hall–Petch revisited at the nanoscale. Mater. Sci. Eng., B 163, 139 (2009).

    Article  CAS  Google Scholar 

  16. K.E. Aifantis and A.A. Konstantinidis: Yielding and tensile behavior of nanocrystalline copper. Mater. Sci. Eng., A 503, 198 (2009).

    Article  Google Scholar 

  17. K.E. Aifantis and J.R. Willis: The role of interfaces in enhancing the yield strength of composites and polycrystals. J. Mech. Phys. Solids 53, 1047 (2005).

    Article  Google Scholar 

  18. J. Schiotz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen: Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60, 11971 (1999).

    Article  CAS  Google Scholar 

  19. J.C.M. Li: Grain boundary impurity and porosity effects on the yield strength of nanocrystalline materials. Appl. Phys. Lett. 90, 041912 (2007).

    Article  Google Scholar 

  20. R.W. Armstrong, H. Conrad, and F.R.N. Nabarro: Meso-to-nano-scopic polycrystal/composite strengthening, in Mechanical Properties of Nanostructured Materials and Nanocomposites, edited by I. Ovid'ko, C.S. Pande, R. Krishnamoorti, E. Lavernia, and G. Skandan (Mater. Res. Soc. Symp. Proc. 791, Warrendale, PA, 2004), p. 69.

    CAS  Google Scholar 

  21. M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis: Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct. Mater. 5, 689 (1995).

    Article  CAS  Google Scholar 

  22. I.A. Ovid'ko and A.G. Sheinerman: Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater. 57, 2217 (2009).

    Article  CAS  Google Scholar 

  23. H.S. Kim, Y. Estrin, and M.B. Bush: Constitutive modelling of strength and plasticity of nanocrystalline metallic materials. Mater. Sci. Eng., A 316, 195 (2001).

    Article  Google Scholar 

  24. H.S. Kim, Y. Estrin, and M.B. Bush: Plastic deformation behaviour of fine-grained materials. Acta Mater. 48, 493 (2000).

    Article  CAS  Google Scholar 

  25. R.W. Armstrong: Plasticity: Grain size effects II, in Encyclopedia of Materials: Science and Technology, edited by K.H.J. Buschow, W.C. Robert, C.F. Merton, I. Bernard, J.K. Edward, M. Subhash, and V. Patrick (Elsevier, Oxford, England, 2005), p. 1.

    Google Scholar 

  26. H.H. Fu, D.J. Benson, and M.A. Meyers: Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater. 49, 2567 (2001).

    Article  CAS  Google Scholar 

  27. M.A. Meyers and E. Ashworth: A model for the effect of grain size on the yield stress of metals. Philos. Mag. A 46, 737 (1982).

    Article  CAS  Google Scholar 

  28. M.Y. Gutkin, I.A. Ovid’ko, and N.V. Skiba: Strengthening and softening mechanisms in nanocrystalline materials under superplastic deformation. Acta Mater. 52, 1711 (2004).

    Article  CAS  Google Scholar 

  29. I.A. Ovid’ko: Superplasticity and ductility of superstrong nanomaterials. Rev. Adv. Mater. Sci. 10, 89 (2005).

    Google Scholar 

  30. K.A. Padmanabhan and H. Gleiter: Optimal structural superplasticity in metals and ceramics of microcrystalline- and nanocrystalline-grain sizes. Mater. Sci. Eng., A 381, 28 (2004).

    Article  Google Scholar 

  31. K. Aifantis and A. Ngan: Modeling dislocation—grain boundary interactions through gradient plasticity and nanoindentation. Mater. Sci. Eng., A 459, 251 (2007).

    Article  Google Scholar 

  32. D. Tabor: The Hardness of Metals (Oxford University Press, 2000).

    Google Scholar 

  33. A.S. Argon and S. Yip: The strongest size. Philos. Mag. Lett. 86, 713 (2006).

    Article  CAS  Google Scholar 

  34. X. Zhang and K.E. Aifantis: Accounting for grain boundary thickness in the sub-micron and nano scales. Rev. Adv. Mater. Sci. 26, 74 (2010).

    Google Scholar 

  35. E.C. Aifantis: On the microstructural origin of certain inelastic models. Trans. ASME, J. Eng. Mat. Techn. 106, 326 (1984).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are grateful to KEA’s European Research Council Starting Grant MINATRAN 211166 for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina E. Aifantis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Aifantis, K.E. Interpreting the softening of nanomaterials through gradient plasticity. Journal of Materials Research 26, 1399–1405 (2011). https://doi.org/10.1557/jmr.2011.123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.123

Navigation