Skip to main content
Log in

Multiple phase formation and its influence on lattice thermal conductivity in β-Zn4Sb3

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The extremely low thermal conductivity (κ) coupled with suitable Seebeck (S) and electrical conductivity (σ) values makes β-Zn4Sb3 a promising candidate for intermediate temperature (200–400 °C) thermogenerator applications. However, the poor thermal stability makes it difficult to reproduce the high thermoelectric figure of merit originally reported for this material.1 Using a combination of surface scanning techniques (Potential Seebeck microprobe, electron backscatter diffraction, and x-ray diffraction), we investigate specimens of β-Zn4Sb3 prepared under different synthesis conditions. Our results indicate the presence of multiple phases of Zn4Sb3 with distinct room temperature S values ranging from 70 to 140 μV/K. Though crystallographically similar, these phases have very different lattice contribution to the thermal conductivity (κL), which vary between 0.45 and 1.0 W/mK and might predominantly reflect the degree of Zn disorder among the different phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE II.

Similar content being viewed by others

REFERENCES

  1. T. Caillat, J.P. Fleurial, and A. Borshchevsky: Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids 58(7), 1119 (1997).

    Article  CAS  Google Scholar 

  2. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen: Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 3(7), 458 (2004).

    Article  CAS  Google Scholar 

  3. E.S. Toberer, K.A. Sasaki, C.R.I. Chisholm, S.M. Haile, W.A. Goddard III, and G.J. Snyder: Local structure of interstitial zinc in β-Zn4Sb3. Phys. Status Solidi RRL 1(6), 253 (2007).

    Article  CAS  Google Scholar 

  4. B.L. Pedersen and B.B. Iversen: Thermally stable thermoelectric Zn4Sb3 by zone-melting synthesis. Appl. Phys. Lett. 92, 161907 (2008).

    Article  Google Scholar 

  5. B.L. Pedersen, H. Birkedal, and B.B. Iversen: Influence of sample compaction on the thermoelectric performance of Zn4Sb3. Appl. Phys. Lett. 89, 242108 (2006).

    Article  Google Scholar 

  6. B.L. Pedersen, H. Birkedal, P.T. Frederiksen, and B.B. Iversen: High temperature stability of thermoelectric Zn4Sb3, in Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria, 2006, p. 520.

  7. H. Yin, M. Christensen, B.L. Pedersen, E. Nishibori, S. Aoyagi, and B.B. Iversen: Thermal stability of thermoelectric Zn4Sb3. J. Electron. Mater. 39(9), 1957 (2009).

    Article  Google Scholar 

  8. B.L. Pedersen, H. Yin, H. Birkedal, M. Nygren, and B.B. Iversen: Cd substitution in MxZn4-xSb3: Effect of thermal stability, crystal structure, phase transitions and thermoelectric performance. Chem. Mater. 22, 2375 (2010).

    Article  CAS  Google Scholar 

  9. B.L. Pedersen, H. Birkedal, M. Nygren, P.T. Frederiksen, and B.B. Iversen: The effect of Mg doping on the thermoelectric performance of Zn4Sb3. J. Appl. Phys. 105, 013517 (2009).

    Article  Google Scholar 

  10. C. Stiewe, T. Dasgupta, L. Boettcher, B. Pedersen, E. Mueller, and B.B. Iversen: Thermoelectric characterization of zone-melted and quenched Zn4Sb3. J. Electron. Mater. 39(9), 1975 (2009).

    Article  Google Scholar 

  11. B. Iversen, B. Lundtoft, M. Christensen, and D. Platzek: Improved p-type thermoelectric materials, a process for their manufacture and uses thereof, D.-A.C.D. Patrade A/S, Fredens Torv 3A, WO Patent No. 128467, 2006.

    Google Scholar 

  12. P. Ziolkowski, G. Karpinski, D. Platzek, C. Stiewe, and E. Mueller: Application overview of the potential seebeck microprobe, in Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria, 2006, p. 684.

  13. G.B. Bokii and R.F. Klevtsova: X-ray structures investigation of the beta-phase in the zinc-antimony system. Zhurnal Strukturnoi Khimii 6, 866 (1965).

    CAS  Google Scholar 

  14. W. Schweika, R.P. Hermann, M. Prager, J. Persson, and V. Keppens: Dumbbell rattling in thermoelectric zinc antimony. Phys. Rev. Lett. 99, 125501 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Mr. W. Schoenau (DLR) for the measurements of thermal diffusivity and specific heat and Mr. Ph. Watermeyer for the EBSD measurements. This work was supported by the Danish Strategic Research Council (Center for Energy Materials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, T., Stiewe, C., Boettcher, L. et al. Multiple phase formation and its influence on lattice thermal conductivity in β-Zn4Sb3. Journal of Materials Research 26, 1925–1932 (2011). https://doi.org/10.1557/jmr.2011.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.116

Navigation