Skip to main content
Log in

Continuum modeling of dislocation plasticity: Theory, numerical implementation, and validation by discrete dislocation simulations

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Miniaturization of components and devices calls for an increased effort on physically motivated continuum theories, which can predict size-dependent plasticity by accounting for length scales associated with the dislocation microstructure. An important recent development has been the formulation of a Continuum Dislocation Dynamics theory (CDD) that provides a kinematically consistent continuum description of the dynamics of curved dislocation systems [T. Hochrainer, et al., Philos. Mag. 87, 1261 (2007)]. In this work, we present a brief overview of dislocation-based continuum plasticity models. We illustrate the implementation of CDD by a numerical example, bending of a thin film, and compare with results obtained by three-dimensional discrete dislocation dynamics (DDD) simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. A. Acharya: A model of crystal plasticity based on the theory of continuously distributed dislocation. J. Mech. Phys. Solids 49(4), 761 (2001).

    Article  Google Scholar 

  2. A. Acharya: Driving forces and boundary conditions in continuum dislocation mechanics. Proc. R. Soc. London, Ser. A 459(2034), 1343 (2003).

    Article  Google Scholar 

  3. E.C. Aifantis: The physics of plastic deformation. Int. J. Plast. 3, 211 (1987).

    Article  Google Scholar 

  4. K.E. Aifantis, J. Senger, D. Weygand, and M. Zaiser: Discrete dislocation dynamics simulation and continuum modeling of plastic boundary layers in tricrystal micropillars. IOP Conf. Ser.: Mat. Sci. Eng. 3, 012025 (2009).

    Article  CAS  Google Scholar 

  5. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov: Enabling strain hardening simulations with dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 15, 553 (2007).

    Article  Google Scholar 

  6. A. Arsenslis, D. Parks, R. Becker, and V. Bulatov: On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. J. Mech. Phys. Solids 52, 1213 (2004).

    Article  Google Scholar 

  7. E. Arzt, G. Dehm, P. Gumbsch, O. Kraft, and D. Weiss: Interface controlled plasticity in metals: Dispersion hardening and thin film deformation. Prog. Mater. Sci. 46(3–4), 283 (2001).

    Article  CAS  Google Scholar 

  8. B.A. Bilby, R. Bullough, and E. Smith: Continuous distributions of dislocations: A new application of the methods of non-Riemannian geometry. Proc. R. Soc. London, Ser. A 231, 263 (1955).

    Article  CAS  Google Scholar 

  9. E. Bittencourt, A. Needleman, M.E. Gurtin, and E. van der Giessen: A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids 51, 281 (2003).

    Article  Google Scholar 

  10. V.V. Bulatov and W. Cai: Nodal effects in dislocation mobility. Phys. Rev. Lett. 89(11), 115501 (2002).

    Article  CAS  Google Scholar 

  11. E. Cosserat and F. Cosserat: Theorie des corps deformables (Libraire scientifique, A. Hermann & Fils, Paris, France, 1909).

    Google Scholar 

  12. B. Devincre, L. Kubin, C. Lemarchand, and R. Madec: Mesoscopic simulations of plastic deformation. Mater. Sci. Eng., A 309–310, 211 (2001).

    Article  Google Scholar 

  13. A. El-Azab: Statistical mechanics treatment of the evolution of dislocation distributions in single crystals. Phys. Rev. B 61(18), 11,956 (2000).

    Article  CAS  Google Scholar 

  14. A.G. Evans and J.W. Hutchinson: A critical assessment of theories of strain gradient plasticity. Acta Mater. 57(5), 1675 (2009).

    Article  CAS  Google Scholar 

  15. M. Fivel, M. Verdier, and G. Ganova: 3D simulation of a nanoindentation test at a mesoscopic scale. Mater. Sci. Eng., A 234–236, 923 (1997).

    Article  Google Scholar 

  16. N.A. Fleck and J.W. Hutchinson: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825 (1993).

    Article  Google Scholar 

  17. S. Forest: Generalized continuum modeling of single and polycrystal plasticity, Continuum Scale Simulation of Engineering Materials, edited by D. Raabe, F. Roters, F. Barlat, and L. Chen (Wiley-VCH Verlag GmbH & Co., KGaA, Weinhem, Germany, 2005).

    Google Scholar 

  18. N.M. Ghoniem and L.Z. Sun: Fast-sum method for the elastic field of three-dimensional dislocation ensembles. Phys. Rev. B 60(1), 128 (1999).

    Article  CAS  Google Scholar 

  19. I. Groma: Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations. Phys. Rev. B 56, 5807 (1997).

    Article  CAS  Google Scholar 

  20. I. Groma, F.F. Csikor, and M. Zaiser: Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271 (2003).

    Article  CAS  Google Scholar 

  21. M.E. Gurtin: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50(1), 5 (2002).

    Article  Google Scholar 

  22. M.E. Gurtin: A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J. Mech. Phys. Solids 56(2), 640 (2008).

    Article  CAS  Google Scholar 

  23. T. Hochrainer: Evolving systems of curved dislocations: Mathematical foundations of a statistical theory. Ph.D. Thesis, Universität Karlsruhe (TH), Shaker Verlag, Aachen, Germany, 2006.

    Google Scholar 

  24. T. Hochrainer, P. Gumbsch, and M. Zaiser: A non-linear multiple slip theory in continuum dislocation dynamics, in Proc. of the 4th Int. Conf. on Multiscale Materials Modeling, pp. 115–118 (2008).

    Google Scholar 

  25. T. Hochrainer, M. Zaiser, and P. Gumbsch: A three-dimensional continuum theory of dislocations: Kinematics and mean field formulation. Philos. Mag. 87, 1261 (2007).

    Article  CAS  Google Scholar 

  26. T. Hochrainer, M. Zaiser, and P. Gumbsch: Dislocation transport and line length increase in averaged descriptions of dislocations. AIP Conf. Proc. 1168(1), 1133 (2009).

    Article  CAS  Google Scholar 

  27. K. Kondo: On the geometrical and physical foundations of the theory of yielding, inProc. 2nd Japan Nat. Congress of Appl. Mech., pp. 41–47 (1952).

    Google Scholar 

  28. A. Kosevich: Crystal dislocations and the theory of elasticity, Dislocations in Solids, Vol. 1: The elastic theory, edited by F.R.N. Nabarro, (North-Holland, Amsterdam, 1979).

  29. J. Kratochvíl and R. Sedlácek: Statistical foundation of continuum dislocation plasticity. Phys. Rev., B 77, 134102/1 (2008).

    Article  CAS  Google Scholar 

  30. E. Kröner: Kontinuumstheorie der Versetzungen und Eigenspannungen (Springer-Verlag, Berlin, 1958).

    Book  Google Scholar 

  31. E. Kröner: Benefits and shortcomings of the continuous theory of dislocations. Int. J. Solids Struct. 38(6–7), 1115 (2001).

    Article  Google Scholar 

  32. L. Kubin and G. Canova: The modeling of dislocation patterns. Scr. Metall. Mater. 27(8), 957 (1992).

    Article  CAS  Google Scholar 

  33. H. Mecking and U. Kocks: Kinetics of flow and strain-hardening. Acta Metall. 29(11), 1865 (1981).

    Article  CAS  Google Scholar 

  34. C. Motz, D. Weygand, J. Senger, and P. Gumbsch: Micro-bending tests: A comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Mater. 56, 1942 (2008).

    Article  CAS  Google Scholar 

  35. C. Motz, D. Weygand, J. Senger, and P. Gumbsch: Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 57(6), 1744 (2009).

    Article  CAS  Google Scholar 

  36. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998).

    Article  CAS  Google Scholar 

  37. J.F. Nye: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153 (1953).

    Article  CAS  Google Scholar 

  38. R.D. Mindlin: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51 (1964).

    Article  Google Scholar 

  39. S. Reese and B. Svendsen: Continuum thermodynamic modeling and simulation of additional hardening due to deformation incompatibility, Kluwer Series on Solid Mechanics and Its Application, Vol. 108, edited by C. Miehe, (Dordrecht, The Netherlands, 2003), pp. 141–150.

    Article  Google Scholar 

  40. F. Roters and D. Raabe: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 54, 2169 (2006).

    Article  CAS  Google Scholar 

  41. S. Sandfeld: The evolution of dislocation density in a higher-order continuum theory of dislocation plasticity. Ph.D. Thesis, Shaker Verlag, Aachen, Germany, 2010.

    Google Scholar 

  42. S. Sandfeld, T. Hochrainer, M. Zaiser, and P. Gumbsch: Numerical implementation of a 3D continuum theory of dislocation dynamics and application to microbending. Philos. Mag. 90(27–28), 3697–3728 (2010).

    Article  CAS  Google Scholar 

  43. S. Sandfeld, T. Hochrainer, and M. Zaiser: Application of a 3D-continuum theory of dislocations to problems of constrained plastic flow: Microbending of a thin film, in Mechanical Behavior at Small Scales—Experiments and Modeling, edited by J. Lou, E. Lilleodden, B.L. Boyce, L. Lu, P.M. Derlet, D. Weygand, J. Li, M. Uchic, and E. Le Bourhis, (Mater. Res. Soc. Symp. Proc., 1224, Warrendale, PA, 2010), p. 143.

    Google Scholar 

  44. S. Sandfeld, M. Zaiser, and T. Hochrainer: Expansion of quasi-discrete dislocation loops in the context of a 3D continuum theory of curved dislocations. AIP Conf. Proc. 1168(1), 1148 (2009).

    Article  Google Scholar 

  45. R. Sedlácek, J. Kratochvíl, and E. Werner: The importance of being curved: Bowing dislocations in a continuum description. Philos. Mag. 83(31–34), 3735 (2003).

    Article  CAS  Google Scholar 

  46. J. Senger, D. Weygand, P. Gumbsch, and O. Kraft: Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading. Scr. Mater. 58(7), 587 (2008).

    Article  CAS  Google Scholar 

  47. D. Weygand, L.H. Friedman, E. van der Giessen, and A. Needleman: Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 10, 437 (2002).

    Article  Google Scholar 

  48. D. Weygand and P. Gumbsch: Study of dislocation reactions and rearrangements under different loading conditions. Mater. Sci. Eng., A 400–401, 158 (2005).

    Article  CAS  Google Scholar 

  49. D. Weygand, J. Senger, C. Motz, W. Augustin, V. Heuveline, and P. Gumbsch: High performance computing and discrete dislocation dynamics: Plasticity of micrometer sized specimens, High Performance Computing in Science and Engineering’ 08, edited by W.E. Nagel (Springer, Berlin, Germany2009), pp. 507–523.

    Chapter  Google Scholar 

  50. S. Yefimov and E. van der Giessen: Size effects in single crystal thin films: Nonlocal crystal plasticity simulations. Eur. J. Mech. A Solids 24(2), 183 (2005).

    Article  Google Scholar 

  51. M. Zaiser, N. Nikitas, T. Hochrainer, and E. Aifantis: Modeling size effects using 3D density- based dislocation dynamics. Philos. Mag. 87, 1283 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support of the Deutsche Forschungsgemeinschaft DFG under contracts HO4227/1 and GU367/30 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Sandfeld.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandfeld, S., Hochrainer, T., Zaiser, M. et al. Continuum modeling of dislocation plasticity: Theory, numerical implementation, and validation by discrete dislocation simulations. Journal of Materials Research 26, 623–632 (2011). https://doi.org/10.1557/jmr.2010.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.92

Navigation