Skip to main content

Fundamentals of Dislocation Dynamics Simulations

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

Abstract

Dislocation dynamics (DD) is a modeling approach for the study of crystal plasticity wherein individual dislocation lines are discretized and their motion in the crystal is simulated. This chapter provides an overview of the basic features of the DD methodology and a guide for how to run DD simulations. Each of the basic building blocks, in terms of both dislocation physics and numerics, is first discussed. Three case studies are then presented, showing how to set up a simulation, ensure solution convergence, and extract key outputs. The major DD codes are briefly reviewed, discussing their major features and differences. Finally, the relation of DD to material models at other length and time scales is discussed, along with current challenges and research topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A more rigorous definition can be written in terms of the line shape functions [9, 35].

References

  1. R. Abbaschian, L. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles (Cengage Learning, Stamford, CT, 2009)

    Google Scholar 

  2. S. Akarapu, H.M. Zbib, D.F. Bahr, Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int. J. Plast. 26, 239–257 (2010)

    Article  Google Scholar 

  3. R.J. Amodeo, N.M. Ghoniem, Dislocation dynamics. I. A proposed methodology for deformation micromechanics. Phys. Rev. B 41 (10), 6958–6967 (1990)

    Google Scholar 

  4. A.S. Argon, Strengthening Mechanisms in Crystal Plasticity. Oxford University Press, Oxford, 2008)

    Google Scholar 

  5. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, V.V. Bulatov, Enabling strain hardening simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng. 15, 553 (2007)

    Article  Google Scholar 

  6. S. Aubry, A. Arsenlis, Use of spherical harmonics for dislocation dynamics in anisotropic elastic media. Model. Simul. Mater. Sci. Eng. 21, 065013 (2013)

    Article  Google Scholar 

  7. B. Bakó, E. Clouet, L.M. Dupuy, M. Blétry, Dislocation dynamics simulations with climb: kinetics of dislocation loop coarsening controlled by bulk diffusion. Philos. Mag. 91, 3173–3191 (2011)

    Article  Google Scholar 

  8. A.A. Benzerga, Y. Bréchet, A. Needleman, E. van der Giessen, Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics. Model. Simul. Mater. Sci. Eng. 12, 159–196 (2004)

    Article  Google Scholar 

  9. V.V. Bulatov, W. Cai, Computer Simulations of Dislocations (Oxford University Press, Oxford, 2006)

    Google Scholar 

  10. V.V. Bulatov, F.F. Abraham, L.P. Kubin, B. Devincre, S. Yip, Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391, 669–672 (1998)

    Article  Google Scholar 

  11. V.V. Bulatov, L.L. Hsiung, M. Tang, A. Arsenlis, M.C. Bartelt, W. Cai, J.N. Florando, M. Hiratani, M. Rhee, G. Hommes, T.G. Pierce, T.D. de la Rubia, Dislocation multi-junctions and strain hardening. Nature 440, 1174–1178 (2006)

    Article  Google Scholar 

  12. W. Cai, V.V. Bulatov, Mobility laws in dislocation dynamics simulations. Mater. Sci. Eng. A 387, 277–281 (2004)

    Article  Google Scholar 

  13. W. Cai, V.V. Bulatov, J.P. Chang, J. Li, S. Yip, Periodic image effects in dislocation modeling. Philos. Mag. 83, 539–567 (2003)

    Article  Google Scholar 

  14. W. Cai, V.V. Bulatov, J. Chang, J. Li, S. Yip, Dislocation core effects on mobility, in Dislocations in Solids, ed. by F.R.N. Nabarro, J.P. Hirth, Vol. 12, Chap. 64 (Elsevier, Amsterdam, 2004), pp. 1–80

    Google Scholar 

  15. W. Cai, A. Arsenlis, C.R. Weinberger, V.V. Bulatov, A non-singular continuum theory of dislocations. J. Mech. Phys. Solids 54, 561–587 (2006)

    Article  Google Scholar 

  16. S.S. Chakravarthy, W.A. Curtin, Effect of source and obstacle strengths on yield stress: A discrete dislocation study. J. Mech. Phys. Solids 58, 625–635 (2010)

    Article  Google Scholar 

  17. Q. Chen, X.-Y. Liu, S.B. Biner, Solute and dislocation junction interactions. Acta Mater. 56, 2937–2947 (2008)

    Article  Google Scholar 

  18. H.H.M. Cleveringa, E. van der Giessen, A. Needleman, Comparison of discrete dislocation and continuum plasticity predictions for a composite material. Acta Mater. 45 (8), 3163–3179 (1997)

    Article  Google Scholar 

  19. T. Crosby, G. Po, C. Erel, N. Ghoniem, The origin of strain avalanches in sub-micron plasticity of fcc metals. Acta Mater. 89, 123–132 (2015)

    Article  Google Scholar 

  20. W.A. Curtin, R.E. Miller, Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11, R33–R68 (2003)

    Article  Google Scholar 

  21. V.S. Deshpande, A. Needleman, E. van der Giessen, Plasticity size effects in tension and compression of single crystals. J. Mech. Phys. Solids 53, 2661–2691 (2005)

    Article  Google Scholar 

  22. B. Devincre, L.P. Kubin, C. Lemarchand, R. Madec, Mesoscopic simulations of plastic deformation. Mater. Sci. Eng. A 309, 211–219 (2001)

    Article  Google Scholar 

  23. B. Devincre, L. Kubin, T. Hoc, Physical analyses of crystal plasticity by DD simulations. Scr. Mater. 54, 741–746 (2006)

    Article  Google Scholar 

  24. B. Devincre, R. Madec, G. Monnet, S. Queyreau, R. Gatti, L. Kubin, Modeling crystal plasticity with dislocation dynamics simulations: the ‘microMegas’ code, in Mechanics of Nano-Objects. (Presses de l’Ecole des Mines de Paris, Paris, 2011), pp. 81–100

    Google Scholar 

  25. G. deWit, J.S. Koehler, Interaction of dislocations with an applied stress in anisotropic crystals. Phys. Rev. 116 (5), 1113–1120 (1959)

    Google Scholar 

  26. J.A. El-Awady, S. Bulent Biner, N.M. Ghoneim, A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes. J. Mech. Phys. Solids 56, 2019–2035 (2008)

    Article  Google Scholar 

  27. H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations. Acta Mater. 92, 126–139 (2015)

    Article  Google Scholar 

  28. R.S. Fertig, S.P. Baker, Simulation of dislocations and strength in thin films: a review. Prog. Mater. Sci. 54, 874–908 (2009)

    Article  Google Scholar 

  29. M.C. Fivel, T.J. Gosling, G.R. Canova, Implementing image stresses in a 3D dislocation simulation. Model. Simul. Mater. Sci. Eng. 4, 581–596 (1996)

    Article  Google Scholar 

  30. M.C. Fivel, C.F. Robertson, G.R. Canova, L. Boulanger, Three-dimensional modeling of indent-induced plastic zone at a mesoscale. Acta Mater. 46, 6183–6194 (1998)

    Article  Google Scholar 

  31. A.J.E. Foreman, The bowing of a dislocation segment. Philos. Mag. 15, 1011–1021 (1967)

    Article  Google Scholar 

  32. S. Gao, M. Fivel, A. Ma, A. Hartmaier, Influence of misfit stresses on dislocation glide in single crystal superalloys: a three-dimensional discrete dislocation dynamics study. J. Mech. Phys. Solids 76, 276–290 (2015)

    Article  Google Scholar 

  33. D.J. Gardner, C.S. Woodward, D.R. Reynolds, G. Hommes, S. Aubry, A. Arsenlis, Implicit integration methods for dislocation dynamics. Model. Simul. Mater. Sci. Eng. 23, 025006 (2015)

    Article  Google Scholar 

  34. N.M. Ghoniem, R. Amodeo, Computer simulation of dislocation pattern formation. Solid State Phenom. 3 & 4, 377 (1988)

    Google Scholar 

  35. N.M. Ghoniem, S.H. Tong, L.Z. Sun, Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys. Rev. B 61, 913 (2000)

    Article  Google Scholar 

  36. M.R. Gilbert, S. Queyreau, J. Marian, Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics. Phys. Rev. B 84, 174103 (2011)

    Article  Google Scholar 

  37. D. Gómez-García, B. Devincre, L.P. Kubin, Dislocation patterns and the similitude principle: 2.5D mesoscale simulations. Phys. Rev. Lett. 96, 125503 (2006)

    Google Scholar 

  38. P.A. Gordon, T. Neeraj, Y. Li, J. Li, Screw dislocation mobility in BCC metals: the role of the compact core on double-kink nucleation. Model. Simul. Mater. Sci. Eng. 18, 085008 (2010)

    Article  Google Scholar 

  39. P.J. Guruprasad, A.A. Benzerga, Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis. J. Mech. Phys. Solids 56, 132–156 (2008)

    Article  Google Scholar 

  40. S.M. Hafez Haghighat, R. Schäublin, D. Raabe, Atomistic simulation of the a 0 < 100 > binary junction formation and its unzipping in body-centered cubic iron. Acta Mater. 64, 24–32 (2014)

    Google Scholar 

  41. A. Hartmaier, M.C. Fivel, G.R. Canova, P. Gumbsch, Image stresses in a free standing thin film. Model. Simul. Mater. Sci. Eng. 7, 781–793 (1999)

    Article  Google Scholar 

  42. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Krieger Publishing Company, Malabar, FL, 1992)

    Google Scholar 

  43. J. Huang, N.M. Ghoniem, Accuracy and convergence of parametric dislocation dynamics. Model. Simul. Mater. Sci. Eng. 10, 1–19 (2002)

    Article  Google Scholar 

  44. M. Huang, L. Zhao, J. Tong, Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys. Int. J. Plast. 28, 141–158 (2010)

    Article  Google Scholar 

  45. D. Hull, D.J. Bacon, Introduction to Dislocations, 4th edn. (Butterworth Heinemann, Oxford, 2009)

    Google Scholar 

  46. A.M. Hussein, S.I. Rao, M.D. Uchic, D.M. Dimiduk, J.A. El-Awady, Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals. Acta Mater. 85, 180–190 (2015)

    Article  Google Scholar 

  47. K. Kang, J. Yin, W. Cai, Stress dependence of cross slip energy barrier for face-centered cubic nickel. J. Mech. Phys. Solids 62, 181–193 (2014)

    Article  Google Scholar 

  48. Y. Kawasaki, T. Takeuchi, Cell structures in copper single crystals deformed in the [001] and [111] axes. Scr. Met. 14, 183–188 (1980)

    Article  Google Scholar 

  49. T.A. Khraishi, H.M. Zbib, Free-surface effects in 3D dislocation dynamics: formulation and modeling. ASME J. Eng. Mater. Technol. 124 (3), 342–351 (2002)

    Article  Google Scholar 

  50. T.A. Khraishi, L. Yan, Y.L. Shen, Dynamic simulations of the interaction between dislocations and dilute particle concentrations in metal–matrix composites (MMCs). Int. J. Plast. 20, 1039–1057 (2004)

    Article  Google Scholar 

  51. U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1–288 (1975)

    Article  Google Scholar 

  52. L. Kubin, Dislocations, Mesoscale Simulations and Plastic Flow. (Oxford University Press, Oxford, 2013)

    Google Scholar 

  53. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, Y. Bréchet, Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom. 23 & 24, 455–472 (1992)

    Google Scholar 

  54. L.P. Kubin, B. Devincre, M. Tang, Mesoscopic modelling and simulation of plasticity in fcc and bcc crystals: dislocation intersections and mobility. J. Comput.-Aided Mater. Des. 5, 31–54 (1998)

    Article  Google Scholar 

  55. W.P. Kuykendall, W. Cai, Conditional convergence in 2-dimensional dislocation dynamics. Model. Simul. Mater. Sci. Eng. 21, 055003 (2013)

    Article  Google Scholar 

  56. W.P. Kuykendall, W. Cai, Effect of multiple stress components on the energy barrier of crossslip in nickel (2016, in preparation)

    Google Scholar 

  57. C. Laird, Chapter 27: fatigue, in Physical Metallurgy, ed. by R.W. Cahn, P. Haasen, 4th edn. (Elsevier Science, Amsterdam, 1996), pp. 2293–2397

    Chapter  Google Scholar 

  58. S.W. Lee, S. Aubry, W.D. Nix, W. Cai, Dislocation junctions and jogs in a free-standing FCC thin film. Model. Simul. Mater. Sci. Eng. 19, 025002 (2011)

    Article  Google Scholar 

  59. J. Li, AtomEye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 11, 173–177 (2003)

    Article  Google Scholar 

  60. R. Madec, B. Devincre, L.P. Kubin, From dislocation junctions to forest hardening. Phys. Rev. Lett. 89, 255508 (2002)

    Article  Google Scholar 

  61. R. Madec, B. Devincre, L. Kubin, T. Hoc, D. Rodney, The role of collinear interaction in dislocation-induced hardening. Science 301, 1879–1882 (2003)

    Article  Google Scholar 

  62. J. Marian, A. Caro, Moving dislocations in disordered alloys: connecting continuum and discrete models with atomistic simulations. Phys. Rev. B 74, 024113 (2006)

    Article  Google Scholar 

  63. E. Martínez, J. Marian, A. Arsenlis, M. Victoria, J.M. Perlado, Atomistically informed dislocation dynamics in fcc crystals. J. Mech. Phys. Solids 56, 869–895 (2008)

    Article  Google Scholar 

  64. MDDP: Multiscale Dislocation Dynamics Plasticity code, http://www.cmms.wsu.edu/

  65. microMegas (mM) code, http://zig.onera.fr/mm_home_page/

  66. R.E. Miller, L.E. Shilkrot, W.A. Curtin, A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films. Acta Mater. 52, 271–284 (2004)

    Article  Google Scholar 

  67. MODEL: Mechanics Of Defect Evolution Library, https://bitbucket.org/model/model/wiki/Home

  68. V. Mohles, Dislocation dynamics simulations of particle strengthening. in Continuum Scale Simulation of Engineering Materials: Fundamentals – Microstructures – Process Applications, ed. by D. Raabe, F. Roters, F. Barlat, L.-Q. Chen (Wiley, Weinheim, 2004)

    Google Scholar 

  69. G. Monnet, B. Devincre, Solute friction and forest interaction. Philos. Mag. 86, 1555–1565 (2006)

    Article  Google Scholar 

  70. D. Mordehai, E. Clouet, M. Fivel, M. Verdier, Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics. Philos. Mag. 88, 899–925 (2008)

    Article  Google Scholar 

  71. C. Motz, D. Weygand, J. Senger, P. Gumbsch, Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 57, 1744–1754 (2009)

    Article  Google Scholar 

  72. A. Needleman, E. van der Giessen, Discrete dislocation and continuum descriptions of plastic flow. Mater. Sci. Eng. A 309–310, 1–13 (2001)

    Article  Google Scholar 

  73. NUMODIS: a Numerical Model for Dislocations, http://www.numodis.com/numodis/index.html

  74. R.W. Nunes, J. Bennetto, D. Vanderbilt, Structure, barriers and relaxation mechanisms of kinks in the 90∘ partial dislocation in silicon. Phys. Rev. Lett. 77, 1516–1519 (1996)

    Article  Google Scholar 

  75. D.L. Olmsted, L.G. Hector Jr., W.A. Curtin, R.J. Clifton, Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model. Simul. Mater. Sci. Eng. 13, 371–388 (2005)

    Article  Google Scholar 

  76. ParaDiS: Parallel Dislocation Simulator code, http://micro.stanford.edu/wiki/ParaDiS_Manuals

  77. G. Po, N. Ghoniem, A variational formulation of constrained dislocation dynamics coupled with heat and vacancy diffusion. J. Mech. Phys. Solids 66, 103–116 (2014)

    Article  Google Scholar 

  78. G. Po, M.S. Mohamed, T. Crosby, C. Erel, A. El-Azab, N. Ghoniem, Recent progress in discrete dislocation dynamics and its applications to micro plasticity. J. Mat. 66, 2108–2120 (2014)

    Google Scholar 

  79. W. Püschl, Models for dislocation cross-slip in close-packed crystal structures: a critical review. Prog. Mater. Sci. 47, 415–461 (2002)

    Article  Google Scholar 

  80. S. Queyreau, B. Devincre, Bauschinger effect in precipitation-strengthened materials: A dislocation dynamics investigation. Philos. Mag. Lett. 89, 419–430 (2009)

    Article  Google Scholar 

  81. S. Queyreau, G. Monnet, B. Devincre, Slip systems interactions in α-iron determined by dislocation dynamics simulations. Int. J. Plast. 25, 361–377 (2009)

    Article  Google Scholar 

  82. S. Queyreau, G. Monnet, B. Devincre, Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 58, 5586–5595 (2010)

    Article  Google Scholar 

  83. S. Queyreau, J. Marian, M.R. Gilbert, B.D. Wirth, Edge dislocation mobilities in bcc Fe obtained by molecular dynamics. Phys. Rev. B 84, 064106 (2011)

    Article  Google Scholar 

  84. S. Rao, T.A. Parthasarathy, D.M. Dimiduk, P.M. Hazzledine, Discrete dislocation simulations of precipitation hardening in superalloys. Philos. Mag. 84, 30, 3195–3215 (2004)

    Article  Google Scholar 

  85. S. Rao, D.M. Dimiduk, J.A. El-Awady, T.A. Parthasarathy, M.D. Uchic, C. Woodward, Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation. Acta Mater. 58, 5547–5557 (2010)

    Article  Google Scholar 

  86. S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, C. Woodward, Atomistic simulations of surface cross-slip nucleation in face-centered cubic nickel and copper. Acta Mater. 61, 2500 (2013)

    Article  Google Scholar 

  87. S. Rao, D.M. Dimiduk, J.A. El-Awady, T.A. Parthasarathy, M.D. Uchic, C. Woodward, Screw dislocation cross slip at cross-slip plane jogs and screw dipole annihilation in FCC Cu and Ni investigated via atomistic simulations. Acta Mater. 101, 10–15 (2015)

    Article  Google Scholar 

  88. I. Ryu, W.D. Nix, W. Cai, Plasticity of bcc micropillars controlled by competition between dislocation multiplication and depletion. Acta Mater. 61, 3233–3241 (2013)

    Article  Google Scholar 

  89. K.W. Schwarz, Simulation of dislocations on the mesoscopic scale. I. Methods and examples. J. Appl. Phys. 85, 108–119 (1999)

    Google Scholar 

  90. K.W. Schwarz, Local rules for approximating strong dislocation interactions in discrete dislocation dynamics. Model. Simul. Mater. Sci. Eng. 11, 609–625 (2003)

    Article  Google Scholar 

  91. P. Shanthraj, M.A. Zikry, Dislocation density evolution and interactions in crystalline materials. Acta Mater. 59, 7695–7702 (2011)

    Article  Google Scholar 

  92. L.E. Shilkrot, R.E. Miller, W.A. Curtin, Coupled atomistic and discrete dislocation plasticity. Phys. Rev. Lett. 89 (2) 025501 (2002)

    Google Scholar 

  93. L.E. Shilkrot, R.E. Miller, W.A. Curtin, Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids 52, 755–787 (2004)

    Article  Google Scholar 

  94. R.B. Sills, W. Cai, Efficient time integration in dislocation dynamics. Model. Simul. Mater. Sci. Eng. 22, 025003 (2014)

    Article  Google Scholar 

  95. R.B. Sills, W. Cai, Solute drag on perfect and extended dislocations. Philos. Mag. 96, 895–921 (2016)

    Article  Google Scholar 

  96. R.B. Sills, A. Aghaei, W. Cai, Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Model. Simul. Mater. Sci. Eng. 24, 045019 (2016)

    Article  Google Scholar 

  97. A. Takahashi, N.M. Ghoniem, A computational method for dislocation-precipitate interaction. J. Mech. Phys. Solids 56, 1534–1553 (2008)

    Article  Google Scholar 

  98. M. Tang, G. Xu, W. Cai, V.V. Bulatov, A hybrid method for computing forces on curved dislocations intersecting free surfaces in three-dimensional dislocation dynamics. Model. Simul. Mater. Sci. Eng. 14, 1139–1151 (2006)

    Article  Google Scholar 

  99. TRIDIS: the edge-screw 3D Discrete Dislocation Dynamics code, http://www.numodis.com/tridis/index.html

  100. E. van der Giessen, A. Needleman, Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689–735 (1995)

    Article  Google Scholar 

  101. A. Vattré, B. Devincre, A. Roos, Orientation dependence of plastic deformation in nickel-based single crystal superalloys: discrete-continuous model simulations. Acta Mater. 58, 1938–1951 (2010)

    Article  Google Scholar 

  102. T. Vegge, T. Rasmussen, T. Leffers, O.B. Pedersen, K.W. Jacobsen, Atomistic simulations of cross-slip of jogged screw dislocations in copper. Philos. Mag. Lett. 81, 137 (2001)

    Article  Google Scholar 

  103. M. Verdier, M. Fivel, I. Groma, Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications. Model. Simul. Mater. Sci. Eng. 6, 755 (1998)

    Article  Google Scholar 

  104. G. Wang, A. Strachan, T. Cagin, W.A. Goddard III, Molecular dynamics simulations of 1/2 a < 111 > screw dislocation in Ta. Mater. Sci. Eng. A 309–310, 133–137 (2001)

    Google Scholar 

  105. C.R. Weinberger, W. Cai, Computing image stress in an elastic cylinder. J. Mech. Phys. Solids 55, 2027–2054 (2007)

    Article  Google Scholar 

  106. C.R. Weinberger, W. Cai, Surface-controlled dislocation multiplication in metal micropillars. Proc. Natl. Acad. Sci. 105, 38, 14304–14307 (2008)

    Article  Google Scholar 

  107. C.R. Weinberger, S. Aubry, S.W. Lee, W.D. Nix, W. Cai, Modelling dislocations in a free-standing thin film. Model. Simul. Mater. Sci. Eng. 17, 075007 (2009)

    Article  Google Scholar 

  108. D. Weygand, L.H. Friedman, E. van der Giessen, A. Needleman, Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics. Model. Simul. Mater. Sci. Eng. 10, 437–468 (2002)

    Article  Google Scholar 

  109. D. Weygand, M. Poignant, P. Gumbsch, O. Kraft, Three-dimensional dislocation dynamics simulation of the influence of sample size on the stress–strain behavior of fcc single-crystalline pillars. Mater. Sci. Eng. A 483, 188–190 (2008)

    Article  Google Scholar 

  110. H. Yasin, H.M. Zbib, M.A. Khaleel, Size and boundary effects in discrete dislocation dynamics: coupling with continuum finite element. Mater. Sci. Eng. A 309–310, 294–299 (2001)

    Article  Google Scholar 

  111. S. Yefimov, I. Groma, E. van der Giessen, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52, 279–300 (2004)

    Article  Google Scholar 

  112. J. Yin, D.M. Barnett, W. Cai, Efficient computation of forces on dislocation segments in anisotropic elasticity. Model. Simul. Mater. Sci. Eng. 18, 045013 (2010)

    Article  Google Scholar 

  113. C. Zhou, R. LeSar, Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int. J. Plast. 30–31, 185–201 (2012)

    Article  Google Scholar 

  114. X.W. Zhou, R.B. Sills, D.K. Ward, R.A. Karnesky, Atomistic calculation of dislocation core energy in aluminum (2016 in preparation)

    Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Benoit Devincre for useful discussions. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0010412. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan B. Sills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sills, R.B., Kuykendall, W.P., Aghaei, A., Cai, W. (2016). Fundamentals of Dislocation Dynamics Simulations. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_2

Download citation

Publish with us

Policies and ethics