Skip to main content

Advertisement

Log in

Reductive/expansion synthesis of zero valent submicron and nanometal particles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Upon rapid heating to a high temperature (~800 °C), mixtures of nitrate compounds and urea created nano and submicron metal particles. The process (reductive/expansion synthesis, RES) results in atomic scale mixing. The product formed from mixed-nitrate (Fe + Ni) salts and urea created true metallic alloy. Unlike other product-from-powder synthesis processes, this process produced only zero valent metal. Initial work suggests this method is a scalable and efficient means for making metallic nanoparticles. Although this is primarily a phenomenological report, a preliminary model is presented: Initially, nitrates decompose to oxide; thus in the absence of urea metal oxide particles form, as in the case of combustion synthesis. In the case of urea/nitrate mixtures, there is a “convolution” of decomposition processes. Urea decomposes to yield reducing gases, leading to the formation of metal rather than oxide. Rapid “expansion” of gas leads to “shattering,” resulting in highly dispersed particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.J.M. Mulder, G.J. Strijkers, G.A.F. vanTilborg, A.W. Griffioen, and K. Nicolay: Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 19, 142 (2006).

    Article  CAS  Google Scholar 

  2. M.E. McHenry, S.A. Majetich, and E.M. Kirkpatrick: Synthesis, structure, properties and magnetic applications of carbon-coated nanocrystals produced by a carbon arc. Mater. Sci. Eng. A 204, 19 (1995).

    Article  Google Scholar 

  3. J.W.M. Bulte and M.M.J. Modo: Nanoparticles in Biomedical Imaging: Emerging Technologies and Applications (Springer-Verlag, New York, 2008).

    Book  Google Scholar 

  4. J. Phillips: Plasma generation of supported metal catalysts. U.S. Patent No. 5,989,648 (1999).

    Google Scholar 

  5. J. Phillips, S. Shim, I.M. Fonseca, and S. Carabineiro: Plasma generation of supported metal catalysts. Appl. Catal. 237, 41 (2002).

    Article  Google Scholar 

  6. H. Zea, C-K. Chen, K. Lester, A. Phillips, A. Datye, I. Fonseca, and J. Phillips: Plasma torch generation of carbon supported metal catalysts. Catal. Today 89, 237 (2004).

    Article  CAS  Google Scholar 

  7. J. Phillips, L. Cheng, C. Luhrs, H. Zea, M. Courtney, and C. Hanson: Plasma torch production of Ti–Al nanoparticles, in Nanophase and Nanocomposite Materials V, edited by S. Komarneni, K. Kaneko, J.C. Parker, and P. O’Brien (Mater. Res. Soc. Symp. Proc. 1056E, Warrendale, PA, 2008), HH08–42.

    Google Scholar 

  8. J. Phillips, C. Luhrs, and P. Fanson: Production of complex cerium–aluminum oxides using an atmospheric pressure plasma torch. Langmuir 23, 7055 (2007).

    Article  CAS  Google Scholar 

  9. J. Phillips, C. Luhrs, C. Peng, and P. Fanson: Engineering aerosol through-plasma torch ceramic particulate structures: Influence of precursor composition. J. Mater. Res. 23, 1870 (2008).

    Article  CAS  Google Scholar 

  10. J. Phillips, C.C. Luhrs, and M. Richard: Engineering particles using the aerosol-through-plasma method. IEEE Transactions on Plasmas 37, 726 (2009).

    Article  Google Scholar 

  11. G.L. Messing, S.C. Zhang, and G.V. Jayanthi: Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 2707 (1993).

    Article  CAS  Google Scholar 

  12. A. Gurav, T. Kodas, T. Pluym, and Y. Xiong: Aerosol processing of materials. Aerosol Sci. Technol. 19, 411 (1993).

    Article  CAS  Google Scholar 

  13. R. Mueller, R. Jossen, S.E. Pratsinis, M. Watson, and M.K. Akhtar: Zirconia nanoparticles made in spray flames at high production rates. J. Am. Ceram. Soc. 87, 197 (2004).

    Article  CAS  Google Scholar 

  14. R. Strobel and S.E. Pratsinis: Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 17, 4743 (2007).

    Article  CAS  Google Scholar 

  15. R.N. Grass and W. Stark: Gas phase synthesis of fcc-cobalt nanoparticles. J. Mater. Chem. 16, 1825 (2006).

    Article  CAS  Google Scholar 

  16. W. Gong, H. Li, Z.G. Zhao, and J.C. Chen: Ultrafine particles of Fe, Co, and Ni ferromagnetic metals. J. Appl. Phys. 69, 5119 (1991).

    Article  CAS  Google Scholar 

  17. S. Panda and S.E. Pratsinis: Modeling the synthesis of aluminum particles by evaporation–condensation in an aerosol flow reactor. Nanostruct. Mater. 5, 755 (1995).

    Article  CAS  Google Scholar 

  18. H.J. Fecht: Synthesis and properties of nanocrystalline metals and alloys prepared by mechanical attrition. Nanostruct. Mater. 1, 125 (1992).

    Article  CAS  Google Scholar 

  19. V. Haas and R. Birringer: The morphology and size of nanostructured Cu, Pd and W generated by sputtering. Nanostruct. Mater. 1, 491 (1992).

    Article  CAS  Google Scholar 

  20. J.A. Eastman, L.J. Thompson, and D.J. Marshall: Synthesis of nanophase materials by electron beam evaporation. Nanostruct. Mater. 2, 377 (1993).

    Article  CAS  Google Scholar 

  21. P.J. Herley and W. Jones: Nanoparticle generation by electron beam induced atomization of binary metal azides. Nanostruct. Mater. 2, 553 (1993).

    Article  CAS  Google Scholar 

  22. K. Recknagle, Q. Xia, J.N. Chung, C.T. Crowe, H. Hamilton, and G.S. Collins: Properties of nanocrystalline zinc produced by gas condensation. Nanostruct. Mater. 4, 103 (1994).

    Article  CAS  Google Scholar 

  23. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, and A. Kostikas: Enhanced magnetization of nanoscale colloidal cobalt particles. Phys. Rev. B, Condens. Matter 51(11), 527 (1995).

    Google Scholar 

  24. T. Yamamoto and J. Mazumder: Synthesis of nanocrystalline NbAl3 by laser ablation technique. Nanostruct. Mater. 7, 305 (1996).

    Article  Google Scholar 

  25. T. Majima, T. Miyahara, K. Haneda, T. Ishii, and M. Takami: Preparation of iron ultrafine particles by the dielectric breakdown of Fe(CO)5 using a transversely excited atmospheric CO2 laser and their characteristics. Jpn. J. Appl. Phys. 33, 4759 (1994).

    Article  CAS  Google Scholar 

  26. Y. Sawada, Y. Kageyama, M. Iwata, and A. Tasaki: Synthesis and magnetic properties of ultrafine iron particles prepared by pyrolysis of carbonyl iron. Jpn. J. Appl. Phys. 31, 3858 (1992).

    Article  CAS  Google Scholar 

  27. M. AlHaik, C. Hanson, C. Luhrs, M. Tehrani, J. Phillips, and S. Miltenberger: Synthesis and characterisation of nano alumina dental filler. Int. J. Nano and Biomaterials 1, 411 (2008).

    Article  CAS  Google Scholar 

  28. C.C. Luhrs, J. Phillips, and P. Fanson: Production of unique structures using the aerosol through plasma process. WIT Trans. Built Environ. 97, 63 (2008).

    Article  CAS  Google Scholar 

  29. C.C. Luhrs, L. Cheng, J. Phillips, and P. Fanson: Plasma generation of nanoparticles for high temperature composite applications. Int. J. Mater. Struct. Integrity. 2/3, 247 (2009).

    Article  Google Scholar 

  30. W. Brockner, C. Ehrhardt, and M. Gjikaj: Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2 6H2O in comparison with Co(NO3)2 6H2O and Ca(NO3)2 4H2O. Thermochim. Acta 456, 64 (2007).

    Article  CAS  Google Scholar 

  31. M.A.A. Elmasry, A. Gaber, and E.M.H. Khater: Thermal decomposition of Ni(II) and Fe(III) nitrates and their mixtures. J. Therm. Anal. 52, 489 (1998).

    Article  CAS  Google Scholar 

  32. L.J.E. Hofer, E.M. Cohn, and W.C. Peebles: Isothermal decomposition of nickel carbide. J. Phys. Chem. 54, 1161 (1950).

    Article  CAS  Google Scholar 

  33. A. Teleki, R. Wengeler, L. Wengeler, H. Nirschi, and S.E. Pratsinix: Distinguishing between aggregates and agglomerates of fame-made TiO2 by high-pressure dispersion. Powder Technol. 181, 292 (2008).

    Article  CAS  Google Scholar 

  34. P.A. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, and J. Brauer: Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424, 131 (2004).

    Article  CAS  Google Scholar 

  35. N.N. Kostyuk: Thermolysis of urea complexes of uranyl nitrate. Radiochemistry 47, 153 (2004).

    Article  Google Scholar 

  36. M. Koebel and M. Elsener: Determination of urea and its thermal decomposition products by high-performance liquid chromatography. J. Chrom. A 689, 164 (1995).

    Article  CAS  Google Scholar 

  37. H.L. Fang and H.F.M. DaCosta: Urea thermolysis and NOx reduction with and without SCR catalyst. Appl. Catal. B 46, 17 (2003).

    Article  CAS  Google Scholar 

  38. F. Nakajima and I. Hamada: The state-of-the-art technology of NOx control. Catal. Today 29, 109 (1996).

    Article  CAS  Google Scholar 

  39. J.R. Gladden: Ammonia/fuel ratio control system for reducing nitrogen oxide emissions. U.S. Patent No. 4,403,473 (1981).

    Google Scholar 

  40. W.R. Epperly, J.D. Peter-Hoblyn, G.F. Shulof Jr., J.C. Sullivan, B.N. Sprague, and J.H. O’Leary: Multi-stage process for reducing the concentration of pollutants in an effluent. U.S. Patent No. 5,057,293 (1991).

    Google Scholar 

  41. B.K. Luftglass, W.H. Sun, and J.E. Hofmann: Catalytic/non-catalytic combination process for nitrogen oxides reduction. U.S. Patent No. 5,139,754 (1992).

    Google Scholar 

  42. W.H. Sun, J.E. Hofmann, and M.L. Lin: Highly efficient hybrid process for nitrogen oxides reduction. U.S. Patent No. 5,286,467 (1994).

    Google Scholar 

  43. F.X. Gibbons, A.L. Huhmann, and A.J. Wallace: Hybrid SCR/SNCR process. U.S. Patent No. 5,853,683 (1998).

    Google Scholar 

  44. M. Koebel, M. Elsener, and M. Klemann: Urea-SCR: A promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today 59(3–4), 335 (2000).

    Article  CAS  Google Scholar 

  45. M. Koebel, M. Elsener, and G. Madia: Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperatures. Ind. Eng. Chem. Res. 40(1), 52 (2001).

    Article  CAS  Google Scholar 

  46. T.J. Wang, S.W. Baek, S.Y. Lee, D.H. Kang, and G.K. Yeo: Experimental investigation on evaporation of urea-water solution droplet for SCR applications. AlCHE J. 55(12), 3267 (2009).

    Article  CAS  Google Scholar 

  47. A. Varma and J.P. Lebrat: Combustion synthesis of advanced materials. Chem. Eng. Sci. 47, 2179 (1992).

    Article  CAS  Google Scholar 

  48. K. Deshpande, A. Mukasyan, and A. Varma: Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties. Chem. Mater. 16, 4896 (2004).

    Article  CAS  Google Scholar 

  49. M. Jovic, M. Dasic, K. Holl, D. Ilic, and S. Mentus: Gel-combustion synthesis of CoSb2O6 and its reduction to powdery Sb2Co alloy. J. Serb. Chem. Soc. 74, 53 (2009).

    Article  CAS  Google Scholar 

  50. R. Garcia, G.A. Hirata, and J. McKittrick: New combustion synthesis technique for the production of (InxGa 1-x)2O3 powders: Hydrazine/metal nitrate method. J. Mater. Res. 16, 1059 (2001).

    Article  CAS  Google Scholar 

  51. A. Dutta, S. Patra, V. Bedekar, A.K. Tyagi, and R.N. Basu: Nanocrystalline gadolinium doped ceria: Combustion synthesis and electrical characterization. J. Nanosci. Nanotechnol. 9, 3075 (2009).

    Article  CAS  Google Scholar 

  52. B. Mandal, A. Dutta, S.K. Deshpande, R.N. Basu, and A.K. Tyagi: Nanocrystalline Nd2-yGdyZr2O7 pyrochlore: Facile synthesis and electrical characterization. J. Mater. Res. 24, 2855 (2009).

    Article  CAS  Google Scholar 

  53. B. Jurca, C. Paraschi, A. Ianculescu, and O. Carp: Thermal behaviour of the system Fe(NO3)3·9H2O–Bi5O(OH)9(NO3)4·9H2O–glycine/urea and of their generated oxides (BiFeO3). J. Therm. Anal. Calorim. 97, 91 (2009).

    Article  CAS  Google Scholar 

  54. R. Ianos, I. Lazau, and C. Pacurariu: Metal nitrate/fuel mixture reactivity and its influence on the solution combustion synthesis of ?-LiAlO2. J. Therm. Anal. Calorim. 97, 209 (2009).

    Article  CAS  Google Scholar 

  55. R.V. Mangalaraja, S. Ananthakumar, J. Mouzon, K. Uma, M. Lopez, C.P. Camurri, and M. Oden: Synthesis of nanocrystalline yttria through in-situ sulphated-combustion technique. J. Ceram. Soc. Jpn. 117, 1065 (2009).

    Article  CAS  Google Scholar 

  56. K.S. Martirosyan, L. Wang, A. Vicent, and D. Luss: Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use. Nanotechnology 20, 405609 (2009).

    Article  CAS  Google Scholar 

  57. V.R.S. Ningthoujam, R. Shukla, R.K. Vatsa, V. Duppel, L. Kienle, and A.K. Tyagi: Gd2O3:Eu3+ particles prepared by glycine-nitrate combustion: Phase, concentration, annealing, and luminescence studies. J. Appl. Phys. 105, 084304 (2009).

    Article  CAS  Google Scholar 

  58. Z.A.R. Munir, W. Lai, and K.H. Ewald: Field assisted combustion synthesis. U.S. Patent No. 5,380,409 (1995).

    Google Scholar 

  59. A. Feng, T. Orling, and Z.A.R. Munir: Field activated pressure assisted combustion synthesis of polycrystalline Ti3SiC2. J. Mater. Res. 14, 925 (1999).

    Article  CAS  Google Scholar 

  60. G. Jiang, H. Zhuang, and W. Li: Combustion synthesis of tungsten carbides under electric field II: Field activated pressure assisted combustion synthesis. Ceram. Int. 30, 191 (2004).

    Article  CAS  Google Scholar 

  61. J. Phillips, T. Shiina, M. Nemer, and K. Lester: Graphitic structures by design. Langmuir 22, 9694 (2006).

    Article  CAS  Google Scholar 

  62. C. Luhrs, J. Phillips, M. Richard, and K. Stamm: Material with core-shell structure-2. U.S. Patent Application 20,090,317,719 (2009).

    Google Scholar 

  63. M.A. Atwater, J. Phillips, and Z.C. Leseman: Formation of carbon nanofibers and thin films catalyzed by palladium in ethylene-hydrogen mixtures. J. Phys. Chem. 114, 5804 (2010).

    CAS  Google Scholar 

  64. M.A. Atwater, J. Phillips, S.K. Doorn, C.C. Luhrs, Y.F. Diez, J.A. Menendez, and Z.C. Leseman: Palladium catalyzed growth of carbon nanofibers and thin films in a partial combustion environment. Carbon 47, 2269 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zea, H., Luhrs, C.C. & Phillips, J. Reductive/expansion synthesis of zero valent submicron and nanometal particles. Journal of Materials Research 26, 672–681 (2011). https://doi.org/10.1557/jmr.2010.66

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.66

Navigation