Skip to main content
Log in

Transition from a punched-out dislocation to a slip dislocation revealed by electron tomography

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Punched-out dislocations emitted from an octahedral oxide precipitate in single-crystal silicon were investigated using high-voltage electron microscopy and tomography (HVEM-tomography) to understand the mechanism of softening caused by the oxide precipitates. In the present paper, direct evidence of the transition of a punched-out prismatic dislocation loop to a slip dislocation is presented. The punched-out dislocation grows into a large matrix dislocation loop by absorption of interstitial atoms, which were produced during oxide precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borghesi, B. Pivac, A. Sassella, and A. Stella: Oxygen precipitation in silicon. J. Appl. Phys. 77, 4169 (1995).

    Google Scholar 

  2. K. Sueoka, N. Ikeda, T. Yamamoto, and S. Kabayashi: Morphology change of oxide precipitates in CZ silicon during 2-step annealing. J. Electrochem. Soc. 141, 3588 (1994).

    CAS  Google Scholar 

  3. K. Jurkschat, S. Senkader, and P.R. Wilshaw: Onset of slip in silicon containing oxide precipitates. J. Appl. Phys. 90, 3219 (2001).

    CAS  Google Scholar 

  4. A. Giannattasio, S. Senkader, R.J. Falster, and P.R. Wilshaw: The role of prismatic dislocation loops in the generation of glide dislocations in Cz-silicon. Commit. Mater. Sci. 30, 131 (2004).

    CAS  Google Scholar 

  5. I. Yonenaga and K. Sumino: Mechanical behavior of Czochralski -silicon crystals as affected by precipitation and dissolution of oxygen atoms. Jon. J. Appl. Phys. 21, 47 (1982).

    CAS  Google Scholar 

  6. B. Leroy and C. Plougonven: Warpage of silicon wafers. J. Electrochem. Soc. 127, 961 (1980).

    CAS  Google Scholar 

  7. K. Yashutake, M. Umeno, and H. Kawabe: Mechanical properties of heat-treated Czochralski-grown silicon crystals. Appl. Phys. Lett. 37, 787 (1980).

    Google Scholar 

  8. R. Behrensmeier, M. Brede, and P. Haasen: The influence of precipitated oxygen on the brittle-ductile transition of silicon. Scr. Metall. 21, 1581 (1987).

    CAS  Google Scholar 

  9. K. Sueoka, M. Akatsuka, and H. Katahama: Dependence of mechanical strength of Czochralski silicon wafers on temperature of oxygen precipitation annealing. J. Electrochem. Soc. 144, 1111 (1997).

    CAS  Google Scholar 

  10. J.S. Barnard, J. Sharp, J.R. Tong, and P.A. Midgley: High-resolution three-dimensional imaging of dislocations. Science 313, 319 (2006).

    CAS  Google Scholar 

  11. J.H. Sharp, J.S. Barnard, K. Kaneko, K. Higashida, and P.A. Midgley: Dislocation tomography made easy: A reconstruction from ADF STEM images obtained using automated image shift correction. J. Phys. Conf. Ser. 126, 012013 (2008).

    Google Scholar 

  12. M. Tanaka, K. Higashida, K. Kaneko, S. Hata, and M. Mitsuhara: Crack tip dislocations revealed by electron tomography in silicon single crystal. Scr. Mater. 59, 901 (2008).

    CAS  Google Scholar 

  13. F.A. Ponce and S. Hahn: Structure of thermally-induced microdefects in Czochralski silicon, in Electron Microscopy of Materials, edited by W.A. Krakow, D.A. Smith, and L.W. Hobbs (Mater. Res. Soc. Symp. Proc. 31, North-Holland, New York, 1984), p. 153.

    CAS  Google Scholar 

  14. J.P. Hirth and J. Lothe: Theory of Dislocations (McGraw-Hill, New York, 1986).

    Google Scholar 

  15. G.E. Dieter: Mechanical Metallurgy, 2nd ed. (McGraw-Hill Book Company, New York, 1976).

    Google Scholar 

  16. M. Tanaka, S. Sadamatsu, G.L. Liu, H. Nakamura, K. Hgashida, and I.M. Robertson: Sequential multiplication of dislocation sources along a crack front revealed by HVEM-tomography. J. Mater. Res. (submitted).

  17. T.Y. Tan and W.K. Tice: Oxygen precipitation and the generation of dislocations in silicon. Philos. Mae. 34, 615 (1976).

    CAS  Google Scholar 

  18. T.Y. Tan: Exigent-accommodation volume of precipitation and formation of oxygen precipitates in silicon, in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by J.C. Mikkelsen, Jr., S.J. Pearton, J.W. Corbett, and S.J. Penny cook (Mater. Res. Soc. Symp. Proc. 59, Pittsburgh, PA, 1986), p. 269.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Tanaka.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Liu, G.S., Kishida, T. et al. Transition from a punched-out dislocation to a slip dislocation revealed by electron tomography. Journal of Materials Research 25, 2292–2296 (2010). https://doi.org/10.1557/jmr.2010.0308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0308

Navigation