Skip to main content
Log in

Metastable nanosized diamond formation from a C−H−O fluid system

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The model of nanosized diamond particles formation at metastable P-T parameters from a C-H-O fluid system is presented. It explains the hydrothermal formation and growth of diamond and the specifics of chemical vapor deposition (CVD) diamond synthesis gas mixtures at low P-T parameters. Further, the model explains the genesis of interstellar nanodiamond formations in space and the genesis of metamorphic microdiamonds in shallow depth Earth rocks. In contrast to models where many possible reactions are considered, the present model makes the simplest possible assumptions about the key processes, and is then able to account for various tendencies seen in experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Badziag, W.S. Verwoerd, W.P. Ellis, and N.R. Greimer: Nanometer-sized diamonds are more stable than graphite. Nature 343, 244 (1990).

    CAS  Google Scholar 

  2. S.K. Simakov: Thermodynamic estimation of oxygen-hydrogen conditions influence on diamond and graphite critical nucleus formation at processes of methane destruction at low pressures. Russ. J. Phys. Chem. 69, 346 (1995).

    CAS  Google Scholar 

  3. V.S. Shatsky and N.V. Sobolev: Origin of diamonds in metamor-phic rocks. Dokl. Akad. Nauk 331, 217 (1993).

    CAS  Google Scholar 

  4. R.C. DeVries, R. Roy, S. Somiy, and S. Yamada: A review of liquid phase systems pertinent to diamond synthesis. Trans. Mater. Res. Soc. Jpn. 14B, 1421 (1994).

    CAS  Google Scholar 

  5. R. Roy, D. Ravichandran, P. Ravindranathan, and A. Badzian: Evidence for hydrofhermal growth of diamond in the C-H-O and C-H-O halogen system. J. Mater. Res. 11, 1164 (1996).

    CAS  Google Scholar 

  6. A. Szymanski, E. Abgarowicz, A. Bakon, A. Niedbalska, R. Salacinski, and J. Sentek: Diamond formed at low pressures and temperatures through liquid-phase hydrofhermal synthesis. Diamond Relat. Mater. 4, 234 (1995).

    CAS  Google Scholar 

  7. X-Z. Zhao, R. Rustum, A.C. Kuruvilla, and A. Badzian: Hydro-thermal growth of diamond in metal-C-H20 systems. Nature 385, 513 (1996).

    Google Scholar 

  8. P.K. Bachmann, D. Leers, and H. Lydtin: Towards a general concept of diamond chemical vapour deposition. Diamond Relat. Mater. 1, 1 (1991).

    CAS  Google Scholar 

  9. M. Marinelli, E. Milani, M. Montuori, A. Paoletti, A. Tebano, G. Balestrino, and P. Paroli: Compositional and spectroscopic study of the growth of diamond films from several gaseous mixtures. J. Appl. Phys. 76, 5702 (1994).

    CAS  Google Scholar 

  10. I.J.J. Ford: Boundaries of the diamond domain in the C-H-O diagram of carbon film deposition. J. Phys. D: ADDI. Phys. 29, 2229 (1996).

    Google Scholar 

  11. S.C. Eaton and M.K. Sunkara: Construction of a new C-H-O ternary diagram for diamond deposition from the vapor phase. Diamond Relat. Mater. 9, 1320 (2000).

    CAS  Google Scholar 

  12. B.V. Deryagin and D.V. Fedoseev: Growth of Diamond and Graphite from the Gas Phase (Nauka, Moscow, 1977), p. 115.

    Google Scholar 

  13. S.P. Chauhan, J.C. Angus, and N.C.J. Gardner: Kinetics of carbon deposition on diamond powder. J. ADDI. Phys. 47, 4746 (1976).

    CAS  Google Scholar 

  14. E.F. Chaikovskii and G.H. Rosenberg: Phase diagram of carbon and possibility of diamond formation at low pressures. Dokl. Akad. Nauk 279, 1372 (1984).

    CAS  Google Scholar 

  15. M.Y. Gamarnik: Energetical preference of diamond nanoparticles. Phys. Rev. B: Condens. Matter 54, 2150 (1996).

    CAS  Google Scholar 

  16. V.L. Tawson and M.G. Abramovich: Polymorphism of crystals and phases size effect: Transformation diamond to graphite. Dokl. Akad. Nauk 287, 291 (1986).

    Google Scholar 

  17. D.V. Fedoseev, B.V. Deryagin, I.G. Varshavskaya, and A.S. Semenova-Tyan-Shanskaya: Diamond Crystallization (Nauka, Moscow, 1984), p. 134.

    Google Scholar 

  18. M.N. Magomedov: About the relationship of surface energy with size and form of nanocrystals. Phys. Tverd. Tela 46, 924 (2004).

    Google Scholar 

  19. J.A. Nuth: Small-particle physics and interstellar diamonds. Nature 329, 589 (1987).

    Google Scholar 

  20. T. Kawato and K. Kondo: Effects of oxygen on CVD diamond synthesis. Jpn. J. ADDI. Phys. 26, 1429 (1987).

    CAS  Google Scholar 

  21. S.K. Simakov: Redox state of Earth’s upper mantle peridotites under the ancient cratons and its connection with diamond genesis. Geochim. Cosmochim. Acta 62, 1811 (1998).

    CAS  Google Scholar 

  22. S.K. Simakov, V.T. Dubinchuk, M.P. Novikov, and N.N. Melnik: Low-pressure-temperature, metastable nanosized diamond and diamond-like phases formation without seeds, in NDNC-2008, the 2nd Annual Conference of New Diamonds and Nanocarbons (Elsevier, Taipei, 2008), p. 219.

    Google Scholar 

  23. M. Sommer, K. Mui, and F.W. Smith: Thermodynamic analysis of the chemical vapor deposition of diamond films. Solid State Commun. 69, 775 (1989).

    CAS  Google Scholar 

  24. R.B. Wang, M. Sommer, and F.W. Smith: The deposition of diamond films via the oxyacetelene torch: Experimental results and thermodynamic predictions. J. Crvst. Growth 119, 271 (1992).

    CAS  Google Scholar 

  25. T. Bernatowicz and E. Zinner: Astrophysical implications of the laboratory study of presolar materials, in Procedings of the AIP Conference (Elsevier, Woodbury, NY, 1997), p. 748.

    Google Scholar 

  26. K. Sellgren: Aromatic hydrocarbons, diamonds, and fullerence in interstellar space: Puzzles to be solved by laboratory and theoretical astrochemistry. Spectrochim. Acta 57, 627 (2001).

    CAS  Google Scholar 

  27. H. Nakano, A. Kouchi, M. Arakawa, Y. Kimura, C. Kaito, H. Ohno, and T. Hondoh: Alteration of interstellar organic materials in meteorites’ parent bodies: A novel route in diamond formation. Proc. Japan Acad. Ser. B 78, 277 (2002).

    Google Scholar 

  28. A. Kouchi, H. Nakano, Y. Kimura, and C. Kaito: Novel routes for diamond formation in interstellar ices and meteoritic parent bodies. Astrophvs. J. 626, L129 (2005).

    CAS  Google Scholar 

  29. T.L. Daulton: Extraterrestrial nanodiamonds in the cosmos, in Ultrananocrystalline Diamond, edited by O. Shenderova and D. Gruen (William-Andrew, Norwich, UK, 2006), p. 23.

  30. O.M. Rozen, U.M. Zorin, and A.A. Zayachkovsky: Diamond foundation in connection of precambrian eclogites of Kokchetave massive. Dokl. Akad. Nauk 203, 674 (1972).

    CAS  Google Scholar 

  31. L.F. Dobrzhinetskaya, E.A. Eide, R.B. Larsen, B.A. Sturt, R.G. Tronnes, D.C. Smith, W.R. Taylor, and T.V. Posukhova: Microdiamonds in high-grade metamorphic rocks of the Western Gneiss region, Norway. Geology 23, 597 (1995).

    CAS  Google Scholar 

  32. N.V. Sobolev and V.S. Shatsky: Diamond inclusions in garnets from metamorphic rocks; A new environment for diamond formation. Nature 343, 742 (1990).

    CAS  Google Scholar 

  33. M.I. Novgorodova and A.V. Rasskazov: High-pressure carbon mineral phase formation as a result of heat explosion at shift transformation of graphite. Dokl. Akad. Nauk 322, 379 (1992).

    CAS  Google Scholar 

  34. R. Wirth and A. Rocholl: Nanocrystalline diamonds from the Earth’s mantle underneaath Hawaii. Earth Planet. Sci. Lett. 211, 357 (2003).

    CAS  Google Scholar 

  35. V.A. Pechnikov and F.V. Kaminsky: Diamond potential of metamorphic rocks in the Kokchetav Massif, northern Kazakhstan. Eur. J. Mineral. 20, 395 (2008).

    CAS  Google Scholar 

  36. K. De Corte, P. Cartigny, V.S. Shatsky, P. De Paepe, M.V. Sobolev, and M. Jovay: Characteristics of microdiamond from UHPM rocks of the Kokchetav massif (Kazakhstan), in Proceedings of the 7th International Kimberlite Conference, edited by J.J. Gurney, L.G. Gurney, M.D. Pascoe, and S.H. Richardson (Elsevier, Cape Town, 1999), p. 174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Simakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simakov, S.K. Metastable nanosized diamond formation from a C−H−O fluid system. Journal of Materials Research 25, 2336–2340 (2010). https://doi.org/10.1557/jmr.2010.0303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0303

Navigation