Skip to main content
Log in

Quasi-static and dynamic deformation behaviors of in situ Zr-based bulk-metallic-glass-matrix composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Quasi-static and dynamic deformation behaviors of Zr-based bulk-metallic-glass-matrix composites, fabricated by Bridgman solidification, were investigated in this study. Upon quasi-static compressive loading, the composites exhibit ultrahigh strength, accompanied by considerable plasticity. The multiplication of shear bands on the lateral surface of deformed samples, and the highly-dense liquid drops on the fracture surface, are in agreement with the improved plasticity. However, upon dynamic loading, the mechanical properties of the composites deteriorate considerably, due to insufficient time to form profuse shear bands. The strain-rate responses of the mechanical properties of the crystalline alloys and the in situ and ex situ bulk metallic glass composites are compared, and the different deformation mechanisms of the in situ composites upon quasi-static and dynamic loading are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Klement, R.H. Willens, and P. Duwez: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960)

    CAS  Google Scholar 

  2. M.K. Miller and P.K. Liaw: Bulk Metallic Glasses (Springer, New York, 2007).

    Google Scholar 

  3. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  4. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).

    Article  CAS  Google Scholar 

  5. D.C. Hofmann, J.Y. Suh, A. Wiest, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Nat. Acad. Sci. U.SA. 105, 20136 (2008).

    Article  CAS  Google Scholar 

  6. J.W. Qiao, S. Wang, Y. Zhang, P.K. Liaw, and G.L. Chen: Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification. Appl. Phys. Lett. 94, 151905 (2009).

    Article  CAS  Google Scholar 

  7. Y. Zhang, W. Xu, H. Tan, and Y. Li: Microstructure control and ductility improvement of La-Al-(Cu,Ni) composites by Bridgman solidification. Acta Mater. 53, 2607 (2005).

    Article  CAS  Google Scholar 

  8. J.W. Qiao, Y. Zhang, and P.K. Liaw: Tailoring microstructures and mechanical properties of Zr-based bulk metallic glass matrix composites by the Bridgman solidification. Adv. Ens. Mater. 10, 1039 (2008).

    Article  CAS  Google Scholar 

  9. D.G. Lee, Y.G. Kim, B. Hwang, S. Lee, and Y.T. Lee: Effects of temperature on dynamic compressive properties of Zr-based amorphous alloy and composite. Mater. Sci. Em.. A 472, 316 (2008).

    Article  CAS  Google Scholar 

  10. J.W. Qiao, Y. Zhang, P. Feng, Q.M. Zhang, and G.L. Chen: Strain rate response of mechanical behaviors for a Zr-based bulk metallic glass matrix composite. Mater. Sci. Em.. A 515, 141 (2009).

    Article  CAS  Google Scholar 

  11. R.W. Armstrong and S.M. Walley: High strain rate properties of metals and alloys. Int. Mater. Rev. 53, 105 (2008).

    Article  CAS  Google Scholar 

  12. M.L. Lee, Y. Li, and C.A. Schuh: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).

    Article  CAS  Google Scholar 

  13. Z. Bian, H. Kato, C.L. Qin, W. Zhang, and A. Inoue: Cu-Hf-Ti-Ag-Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005).

    Article  CAS  Google Scholar 

  14. X. Hui, W. Dong, G.L. Chen, and K.F. Yao: Formation, micro-structure and properties of long-period order structure reinforced Mg-based metallic glass composites. Acta Mater. 55, 907 (2007).

    Article  CAS  Google Scholar 

  15. F. Szuecs, C.P. Kim, and W.L. Johnson: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).

    Article  CAS  Google Scholar 

  16. H. Ma, J. Xu, and E. Ma: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).

    Article  CAS  Google Scholar 

  17. M. Calin, L.C. Zhang, and J. Eckert: Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy. Scr. Mater. 57, 1101 (2007).

    Article  CAS  Google Scholar 

  18. F.Q. Guo, S.J. Poon, and G.J. Shiflet: Networking amorphous phase reinforced titanium composites which show tensile plasticity. Philos. Mae. Lett. 88, 615 (2005).

    Article  CAS  Google Scholar 

  19. G. He, J. Eckert, W. Loser, and L. Schultz: Novel Ti-base nano-structure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).

    Article  CAS  Google Scholar 

  20. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen: Solid-solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).

    Article  CAS  Google Scholar 

  21. G. Duan, A. Wiest, M.L. Lind, A. Kahl, and W.L. Johnson: Lightweight Ti-based bulk metallic glasses excluding late transition metals. Scr. Mater. 58, 465 (2008).

    Article  CAS  Google Scholar 

  22. G. Chen, H. Bei, Y. Cao, A. Gali, C.T. Liu, and E.P. George: Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases. Appl. Phys. Lett. 95, 081908 (2009).

    Article  CAS  Google Scholar 

  23. C.T. Liu, L. Healtherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Test environment and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811 (1998).

    Article  Google Scholar 

  24. H.A. Bruck, A.J. Rosakis, and W.L. Johnson: The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 (1996).

    Article  CAS  Google Scholar 

  25. J.J. Lewandowski and A.L. Greer: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).

    Article  CAS  Google Scholar 

  26. B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G.Y. Wang, C.T. Liu, and M. Denta: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904 (2005).

    Article  CAS  Google Scholar 

  27. C. Zener and J.H. Hollomon: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944).

    Article  Google Scholar 

  28. I. Rohr, H. Nahme, and K. Thoma: Materials characterization and constitutive modeling of ductile high strength steel for a wide range of strain rates. Int. J. Impact Ens. 31, 401 (2005).

    Article  Google Scholar 

  29. S.T. Chiou, H.L. Tsai, and W.S. Lee: Impact mechanical response and microstructure evolution of Ti alloy under various temperatures. J. Mater. Process. Technol. 209, 2282 (2009).

    Article  CAS  Google Scholar 

  30. G. Subhash, R.J. Dowding, and L.J. Kecskes: Characterization of uniaxial compressive response of bulk amorphous Zr-Ti-Cu-Ni-Be alloy. Mater. Sci. Em.. A 334, 33 (2002).

    Article  Google Scholar 

  31. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scr. Mater. 46, 43 (2002).

    Article  CAS  Google Scholar 

  32. G. Sunny, F. Yuan, V. Prakash, and J. Lewandowski: Effect of high strain rates on peak stress in a Zr-based bulk metallic glass. J. Appl. Phys. 104, 093522 (2008).

    Article  CAS  Google Scholar 

  33. W.H. Jiang, G.J. Fan, F.X. Liu, G.Y. Wang, H. Choo, and P.K. Liaw: Rate dependence of shear banding and serrated flows in a bulk metallic glass. J. Mater. Res. 21, 2164 (2006).

    Article  CAS  Google Scholar 

  34. W.H. Jiang, H.H. Liao, F.X. Liu, H. Choo, and P.K. Liaw: Rate-dependence temperature increase in shear bands of a bulk-metallic glass. Metall. Mater. Trans. A 39, 1822 (2008).

    Article  CAS  Google Scholar 

  35. U. Kühn, J. Eckert, N. Mattern, and L. Schultz: Microstructure and mechanical properties of slowly cooled Zr-Nb-Cu-Ni-Al composites with ductile bcc phase. Mater. Sci. Ene.. A 375–377, 322 (2004).

    Article  CAS  Google Scholar 

  36. W. Loser, J. Das, A. Giith, H-J. Klauß, C. Mickel, U. Kiihn, J. Eckert, S.K. Roy, and L. Schultz: Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr-Nb-Cu-Ni-Al in situ composites. Intermetallics 12, 1153 (2004).

    Article  CAS  Google Scholar 

  37. J.W. Qiao, Y. Zhang, P.K. Liaw, and G.L. Chen: Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite. Scr. Mater. 61, 1087 (2009).

    Article  CAS  Google Scholar 

  38. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang: Strength-improved Zr-based metallic glass/porous tungsten phase composite by hydrostatic extrusion. appl. Phys. Lett. 90, 081901 (2007).

    Google Scholar 

  39. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, H.F. Zhang, and Z.Q. Hu: Deformation and failure behavior of a hydrostatically extruded Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass/porous tungsten phase composite under dynamic compression. Compos. Sci. Technol. 68, 3396 (2008).

    Article  CAS  Google Scholar 

  40. M. Martin, L. Meyer, L. Kecskes, and N.N. Thadhani: Uniaxial and biaxial compressive response of a bulk metallic glass composite over a range of strain rates and temperatures. J. Mater. Res. 24, 66 (2009).

    CAS  Google Scholar 

  41. D.G. Lee, Y.G. Kim, S. Lee, and N.J. Kim: Dynamic deformation and fracture behaviors of two Zr-based amorphous alloys. Metall. Mater. Trans. A 37, 2893 (2006).

    Article  Google Scholar 

  42. R.T. Ott, F. Sansoz, T. Jiao, D. Warner, C. Fan, J.F. Molinari, K.T. Ramesh, and T.C. Hufnagel: Yield criteria and strain-rate behavior of Zr574Cui64Ni8.2Ta8Al10 metallic-glass-matrix composites. Metall. Mater. Trans. A 37, 3251 (2006).

    Article  Google Scholar 

  43. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).

    Article  CAS  Google Scholar 

  44. K. Georgarakis, M. Aljerf, Y. Li, A. LeMoulec, F. Chariot, A.R. Yavari, K. Chornokhvostenko, E. Tabachnikova, G.A. Evangelakis, D.B. Miracle, A.L. Greer, and T. Zhang: Shear band melting and serrated flow in metallic glasses. Appl. Phys. Lett. 93, 031907 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, J.W., Feng, P., Zhang, Y. et al. Quasi-static and dynamic deformation behaviors of in situ Zr-based bulk-metallic-glass-matrix composites. Journal of Materials Research 25, 2264–2270 (2010). https://doi.org/10.1557/jmr.2010.0289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0289

Navigation