Skip to main content
Log in

Near-threshold fatigue crack growth in bulk metallic glass composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A major drawback in using bulk metallic glasses (BMGs) as structural materials is their extremely poor fatigue performance. One way to alleviate this problem is through the composite route, in which second phases are introduced into the glass to arrest crack growth. In this paper, the fatigue crack growth behavior of in situ reinforced BMGs with crystalline dendrites, which are tailored to impart significant ductility and toughness to the BMG, was investigated. Three composites, all with equal volume fraction of dendrite phases, were examined to assess the influence of chemical composition on the near-threshold fatigue crack growth characteristics. While the ductility is enhanced at the cost of yield strength vis-à-vis that of the fully amorphous BMG, the threshold stress intensity factor range for fatigue crack initiation in composites was found to be enhanced by more than 100%. Crack blunting and trapping by the dendritic phases and constraining of the shear bands within the interdendritic regions are the micromechanisms responsible for this enhanced fatigue crack growth resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  2. C.J. Gilbert, V. Schroeder, and R.O. Ritchie: Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 30, 1739 (1999).

    Article  Google Scholar 

  3. R. Raghavan, R. Ayer, H.W. Jin, C.N. Marzinsky, and U. Ramamurty: Effect of shot peening on the fatigue life of a Zr-based bulk metallic glass. Scr. Mater. 59, 167 (2008).

    Article  CAS  Google Scholar 

  4. R. Bhowmick, R. Raghavan, K. Chattopadhyay, and U. Ramamurty: Plastic flow softening in a bulk metallic glass. Acta Mater. 54, 4221 (2006).

    Article  CAS  Google Scholar 

  5. B.G. Yoo, K.W. Park, J.C. Lee, U. Ramamurty, and J. Jang: Role of free volume in strain softening of as-cast and annealed bulk metallic glass. J. Mater. Res. 24, 1405 (2009).

    Article  CAS  Google Scholar 

  6. N. Nagendra, U. Ramamurty, T.T. Goh, and Y. Li: Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater. 48, 2603 (2000).

    Article  CAS  Google Scholar 

  7. J. Basu, N. Nagendra, Y. Li, and U. Ramamurty: Microstructure and mechanical properties of partially-crystallized La-based bulk metallic glass. Philos. Mag. 83, 1747 (2003).

    Article  CAS  Google Scholar 

  8. R. Raghavan, P. Murali, and U. Ramamurty: On the factors influencing the ductile to brittle transition in a bulk metallic glass. Acta Mater. 57, 3332 (2009).

    Article  CAS  Google Scholar 

  9. R. Raghavan, V.V. Shastry, A. Kumar, T. Jayakumar, and U. Ramamurty: Toughness of as cast and partially recrystallized Zr-based bulk metallic glass. Intermetallics 17, 835 (2009).

    Article  CAS  Google Scholar 

  10. T. Liu, P. Shen, F. Qiu, Z. Yin, Q. Lin, Q. Jiang, and T. Zhang: Synthesis and mechanical properties of TiC-reinforced Cu-based bulk metallic glass composites. Scr. Mater. 60, 84 (2009).

    Article  CAS  Google Scholar 

  11. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  12. F. Szuecs, C.P. Kim, and W.L. Johnson: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).

    Article  CAS  Google Scholar 

  13. Z. Bian, H. Kato, C. Qin, W. Zhang, and A. Inoue: Cu–Hf–Ti–Ag–Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005).

    Article  CAS  Google Scholar 

  14. C.L. Qin, W. Zhang, K. Asami, H. Kimura, X.M. Wang, and A. Inoue: A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Mater. 54, 3713 (2006).

    Article  CAS  Google Scholar 

  15. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1086 (2008).

    Article  Google Scholar 

  16. M.E. Launey, D.C. Hofmann, J.Y. Suh, H. Kozachkov, W.L. Johnson, and R.O. Ritchie: Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites. Appl. Phys. Lett. 94, 241910 (2009).

    Article  Google Scholar 

  17. S. Suresh: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, 1998).

    Book  Google Scholar 

  18. M. Flores, W.L. Johnson, and R.H. Dauskardt: Fracture and fatigue behavior of a Zr–Ti–Nb ductile phase reinforced bulk metallic glass matrix composite. Scr. Mater. 49, 1181 (2003).

    Article  CAS  Google Scholar 

  19. G.Y. Wang, P.K. Liaw, A. Peker, M. Freels, W.H. Peter, R.A. Buchanan, and C.R. Brooks: Comparison of fatigue behavior of a bulk metallic glass and its composite. Intermetallics 14, 1091 (2006).

    Article  CAS  Google Scholar 

  20. M.E. Launey, D.C. Hofmann, W.L. Johnson, and R.O. Ritchie: Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses. Proc. Nat. Acad. Sci. U.S.A. 106, 4986 (2009).

    Article  CAS  Google Scholar 

  21. G. Subhash, R.J. Dowding, and L.J. Kecskes: Characterization of uniaxial compressive response of a bulk amorphous Zr–Ti–Cu–Ni–Be alloy. Mater. Sci. Eng.A, 234, 33 (2002).

    Article  Google Scholar 

  22. D.C. Hofmann, J.Y. Suh, A. Wiest, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Nat. Acad. Sci. U.S.A. 105, 20136 (2008).

    Article  CAS  Google Scholar 

  23. Standard test method for measurement of fatigue crack-growth rates. E 647–05. (ASTM International, W. Conshohocken, PA, 2005), p. 1-45.

  24. A. Leonhard, L.Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, and L. Schultz: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).

    Article  CAS  Google Scholar 

  25. H. Zhang, Z.G. Wang, K.Q. Qiu, Q.S. Zang, and H.F. Zhang: Cyclic deformation and fatigue crack propagation of a Zr-based bulk amorphous metal. Mater. Sci. Ew.A, 356, 173 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upadrasta Ramamurty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boopathy, K., Hofmann, D.C., Johnson, W.L. et al. Near-threshold fatigue crack growth in bulk metallic glass composites. Journal of Materials Research 24, 3611–3619 (2009). https://doi.org/10.1557/jmr.2009.0439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0439

Navigation