Skip to main content
Log in

Formation, microstructure, and mechanical properties of in situ Mg-Ni-(Gd,Nd) bulk metallic glass composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Based on a ternary Mg75Ni15Gd10 metallic glass former, a new Mg80Ni12Gd4Nd4 bulk metallic glass composite (BMGC) was developed by tailoring the compositions of Mg and rare earth (RE) elements. This BMGC displayed compressive ultimate strength over 900 MPa with a total strain to failure of 4.3% and specific strength of 3.12 × 105 Nm/kg. The improved mechanical properties were attributed to a “dual phases” structure consisting of Mg solid solution flakes and glassy matrix in the Mg80Ni12Gd4Nd4 BMGC. The homogeneously dispersed Mg phases reinforcement in the BMGC were characterized as a long period ordered structure (LPOS) with periodic arrays of six close-packed planes distorted from the ideal hexagonal lattice of 6H-type. The LPOS-Mg in the composite can act as a soft media to trap or interact with the unstable shear bands and contribute to plastic strain. The present study may provide a guideline for designing the Mg–TM–RE-based (TM: transition metals) BMGCs with “dual phases” structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.K. Xu, H. Ma, J. Xu, and E. Ma: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 (2005).

    Article  CAS  Google Scholar 

  2. D.G. Pan, H.F. Zhang, A.M. Wang, and Z.Q. Hu: Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles. Appl. Phys. Lett. 89, 261904 (2006).

    Article  Google Scholar 

  3. M. Kinaka, H. Kato, M. Hasegawa, and A. Inoue: High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid. Mater. Sci. Eng.A, 494, 299 (2008).

    Article  Google Scholar 

  4. J.S.C. Jang, J.Y. Ciou, T.H. Hung, J.C. Huang, and X.H. Du: Enhanced mechanical performance of Mg metallic glass with porous Mo particles. Appl. Phys. Lett. 92, 011930 (2008).

    Article  Google Scholar 

  5. H. Ma, J. Xu, and E. Ma: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).

    Article  CAS  Google Scholar 

  6. F. Li, S. Guan, B. Shen, A. Makino, and A. Inoue: High specific strength and improved ductility of bulk (Mg0.65Cu0.25Gd0.1)100–x Tix metallic glass composites. Mater. Trans., JIM48, 3139 (2007).

    Google Scholar 

  7. Q. Zheng, H. Ma, E. Ma, and J. Xu: Mg–Cu–(Y,Nd) pseudoternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity. Scr. Mater. 55, 541 (2006).

    Article  CAS  Google Scholar 

  8. X. Hui, W. Dong, G.L. Chen, and K.F. Yao: Formation, micro-structure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites. Acta Mater. 55, 907 (2007).

    Article  CAS  Google Scholar 

  9. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).

    Article  CAS  Google Scholar 

  10. J.W. Qiao, S. Wang, Y. Zhang, P.K. Liaw, and G.L. Chen: Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by Bridgman solidification. Appl. Phys. Lett. 94, 151905 (2009).

    Article  Google Scholar 

  11. M.L. Lee, Y. Li, and C.A. Schuh: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).

    Article  CAS  Google Scholar 

  12. G.Y. Yuan, K. Amiya, and A. Inoue: Structural relaxation, glass-forming ability and mechanical properties of Mg–Cu–Ni-Gd alloys. J. Non-Cryst. Solids 351, 729 (2005).

    Article  CAS  Google Scholar 

  13. J. Yin, G.Y. Yuan, Z.H. Chu, J. Zhang, and W.J. Ding: Mg-Ni-(Gd,Nd) bulk metallic glasses with improved glass-forming ability and mechanical properties. J. Mater. Res. 24, 2130 (2009).

    Article  CAS  Google Scholar 

  14. T. Itoi, T. Seimiya, Y. Kawamura, and M. Hirohashi: Long period stacking structures observed in Mg97Zn1Y2 alloy. Scr. Mater. 51, 107 (2004).

    Article  CAS  Google Scholar 

  15. T. Itoi, K. Takahashi, H. Moriyama, and M. Hirohashi: A high-strength Mg–Ni–Y alloy sheet with a long-period ordered phase prepared by hot-rolling. Scr. Mater. 59, 1155(2008).

    Article  CAS  Google Scholar 

  16. Y. Kawamura, T. Kasahara, S. Izumi, and M. Yamasaki: Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure. Scr. Mater. 55, 453 (2006).

    Article  CAS  Google Scholar 

  17. E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue: Long-period ordered structure in a high-strength nanocrystalline Mg-1%Zn-2%Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 50, 3845 (2002).

    Article  CAS  Google Scholar 

  18. C.A. Schuh, T.C. Hufnagel, and U. Ramanurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    CAS  Google Scholar 

  19. J.S.C. Jang, C.C. Tseng, L.J. Chang, C.F. Chang, W.J. Lee, J.C. Huang, and C.T. Liu: Glass forming ability and thermal properties of the Mg-based amorphous alloys with dual rare earth elements addition. Mater. Trans., JIM48, 1684 (2007).

    Article  CAS  Google Scholar 

  20. J-L Soubeyroux, S. Puech, and J-J Blandin: Synthesis of new Mg-based metallic glasses with high glass forming ability. Mater. Sci. Eng.A, 449–451, 253 (2007).

    Article  Google Scholar 

  21. E.S. Park and D.H. Kim: Formation of Mg–Cu–Ni–Ag–Zn–Y–Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. J. Mater. Res. 20, 1465 (2005).

    Article  CAS  Google Scholar 

  22. E.S. Park, J.S. Kyeong, and D.H. Kim: Enhanced glass forming ability and plasticity in Mg-based bulk metallic glasses. Mater. Sci. Eng.A, 449–451, 225 (2007).

    Article  Google Scholar 

  23. Q.F. Li, K.Q. Qiu, X. Yang, Y.L. Ren, X.G. Yuan, and T. Zhang: Glass forming ability and reliability in fracture stress for Mg–Cu–Ni–Nd–Y bulk metallic glasses. Mater. Sci. Eng.A, 491, 420 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyin Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, J., Yuan, G., Chu, Z. et al. Formation, microstructure, and mechanical properties of in situ Mg-Ni-(Gd,Nd) bulk metallic glass composite. Journal of Materials Research 24, 3603–3610 (2009). https://doi.org/10.1557/jmr.2009.0438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0438

Navigation