Skip to main content
Log in

A high-strength extruded Mg-Gd-Zn-Zr alloy with superplasticity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This article presents an extruded Mg–Gd–Zn–Zr alloy produced by conventional ingot metallurgy, exhibiting high-strength and excellent ductility at room and elevated temperatures. The superplastic behavior was observed in the Mg–Gd–Zn (–Zr) alloy at elevated temperatures above 573 K. In the alloy, both the X phase in grain boundaries and the lamellae within matrix have the 14H-type long-period, stacking-ordered structure. It indicates that the X phase and the lamellae within matrix play important roles in the excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal aging at 250°C. J. Alloys Compd. 421, 309 (2006).

    Article  CAS  Google Scholar 

  2. X. Gao and J.F. Nie: Enhanced precipitation-hardening in Mg–Gd alloys containing Ag and Zn. Scr. Mater. 58, 619 (2008).

    Article  CAS  Google Scholar 

  3. W.J. Ding, Y.J. Wu, X.Q. Zeng, L.M. Peng, G.Y. Yuan, and D.L. Lin: Formation of 14H-type long period stacking ordered structure in the as-cast and solid-solution-treated Mg–Gd–Zn–Zr alloys. J. Mater. Res. 24(5), 1842 (2009).

    Article  CAS  Google Scholar 

  4. Y.J. Wu, X.Q. Zeng, D.L. Lin, L.M. Peng, and W.J. Ding: The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773K. J. Alloys Compd. 447, 193 (2009).

    Article  Google Scholar 

  5. Y.J. Wu, D.L. Lin, X.Q. Zeng, L.M. Peng, and W.J. Ding: Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg–Gd–Zn–Zr alloy. J. Mater. Sci. 44, 1607 (2009).

    Article  CAS  Google Scholar 

  6. Z.P. Luo and S.Q. Zhang: High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg–Zn–Zr–Y magnesium alloy. J. Mater. Sci. Lett. 19, 813 (2000).

    Article  CAS  Google Scholar 

  7. A. Inoue, Y. Kawamura, and M. Matsushita: Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg–Zn–Y system. J. Mater. Res. 16, 1894 (2001).

    Article  CAS  Google Scholar 

  8. Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto: Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600MPa. Mater. Trans. 42, 1172 (2001).

    Article  CAS  Google Scholar 

  9. E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue: Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 50, 3845 (2002).

    Article  CAS  Google Scholar 

  10. M. Nishida, T. Yamamuro, and M. Nagano: Electron microscopy study of microstructure modifications in RS P/M Mg97Zn1Y2 alloy. Mater. Sci. Forum 419–422, 715 (2003).

    Article  Google Scholar 

  11. T. Morikawa, K. Kaneko, and K. Higashida: The fine-grained structure in magnesium alloy containing long-period stacking order phase. Mater. Trans. 49(6), 1294 (2008).

    Article  CAS  Google Scholar 

  12. B. Chen, D.L. Lin, X.Q. Zeng, and C. Lu: Microstructure and mechanical properties of ultrafine grained Mg97Y2Zn1 alloy processed by equal channel angular pressing. J. Alloys Compd. 440, 94 (2007).

    Article  CAS  Google Scholar 

  13. B.S. Wang, Y.B. Liu, and J. An: Morphologies of microstructure in Mg97Y2Zn1 ribbon upon ageing at different temperatures. Mater. Trans. 49(8), 1768 (2008).

    Article  CAS  Google Scholar 

  14. Y. Kawamura, T. Morisaka, and M. Yamasaki: Structure and mechanical properties of rapidly solidified Mg97Zn1RE2 alloys. Mater. Sci. Forum 419–422, 751 (2003).

    Article  Google Scholar 

  15. T. Itoi, T. Seimiya, Y. Kawamura, and M. Hirohashi: Long period stacking structures observed in Mg97Zn1Y2 alloy. Scr. Mater. 51, 107 (2004).

    Article  CAS  Google Scholar 

  16. Y. Kawamura and M. Yamasaki: Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater. Trans. 48(11), 2986 (2007).

    Article  CAS  Google Scholar 

  17. M. Yamasaki, M. Sasaki, M. Nishijima, and K. Hiraga: Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature. Acta Mater. 55, 6798 (2007).

    Article  CAS  Google Scholar 

  18. M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura: Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking bordered structure precipitate. Scr. Mater. 53, 799 (2005).

    Article  CAS  Google Scholar 

  19. S. Yoshimoto, M. Yamasaki, and Y. Kawamura: Microstructure and mechanical properties of extruded Mg–Zn–Y alloys with 14H long period ordered structure. Mater. Trans. 47(4), 959 (2006).

    Article  CAS  Google Scholar 

  20. M. Matsuda, S. Ti, Y. Kawamura, and M. Nishida: Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2. Mater. Sci. Eng.A, 393, 269 (2005).

    Article  Google Scholar 

  21. K. Amiya, T. Ohsuna, and A. Inoue: Long-period hexagonal structures in melt-spun Mg97Ln2Y1 (Ln=Lanthanide metal) alloys. Mater. Trans. 44, 2151 (2003).

    Article  CAS  Google Scholar 

  22. M. Nishida, Y. Kawamura, T. Yamamura, and A. Inoue: Formation process of unique microstructure in rapidly solidified Mg97Zn1Y2 alloy. Mater. Sci. Eng.A, 375–377, 1217 (2004).

    Article  Google Scholar 

  23. T. Honma, T. Ohkubo, S. Kamado, and K. Hono: Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mater. 55, 4137 (2007).

    Article  CAS  Google Scholar 

  24. P. Perez, S. Gonzalez, G. Garces, G. Caruana, and P. Adeva: High-strength extruded Mg96Ni2Y1RE1 alloy exhibiting superplastic behaviour. Mater. Sci. Eng.A, 485, 194 (2008).

    Article  Google Scholar 

  25. J.C. Tan and M.J. Tan: Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mater. Sci. Eng.A, 339, 81 (2003).

    Article  Google Scholar 

  26. T.G. Langdon: Future research directions for interface engineering in high temperature plasticity. Mater. Sci. Eng.A, 166, 237 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y.J., Peng, L.M., Zeng, X.Q. et al. A high-strength extruded Mg-Gd-Zn-Zr alloy with superplasticity. Journal of Materials Research 24, 3596–3602 (2009). https://doi.org/10.1557/jmr.2009.0425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0425

Navigation