Skip to main content
Log in

Ignition and reaction mechanisms of thermal explosion reaction in the Ni-Ti-C system under air and Ar

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ignition and reaction mechanisms of the thermal explosion reaction in the Ni-Ti-C system under air and Ar conditions were investigated. The reaction for the formation of TiC can be initiated at a low temperature under air. The ignition temperature under air is much lower than that under Ar. Under Ar, both the ignition and reaction mechanisms consist of dissolution, reaction, and precipitation. Under air, the ignition mechanism is confirmed to be the chemical oven mechanism, and the reaction mechanism is dissolution, reaction, and precipitation. The mechanism of gas transport plays a much more minor role in the ignition and reaction processes under air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.Q. Xiao, Q.C. Fan, M.Z. Gu, Z.H. Wang, and Z.H. Jin: Dissolution-precipation mechanism of self-propagating hightemperature synthesis of TiC-Ni cermet. Mater. Sci. Eng., A 382, 132 (2004).

    Article  Google Scholar 

  2. J.J. Moore and H.J. Feng: Combustion synthesis of advanced materials: Part I. Reaction parameters. Prog. Mater. Sci. 39, 243 (1995).

    Article  CAS  Google Scholar 

  3. H.C. Yi and J.J. Moore: Self-propagating high-temperature synthesis (SHS) of powder-compacted materials. J. Mater. Sci. 25, 1159 (1990).

    Article  CAS  Google Scholar 

  4. I. Song, L. Wang, M. Wixom, and L.T. Thompson: Selfpropagating high temperature synthesis and dynamic compaction of titanium diboride/titanium carbide composites. J. Mater. Sci. 35, 2611 (2000).

    Article  CAS  Google Scholar 

  5. N. Durlu: Titanium carbide based composites for high temperature applications. J. Eur. Ceram. Soc. 19, 2415 (1999).

    Article  CAS  Google Scholar 

  6. S.D. Dunmead, D.W. Ready, C.E. Semler, and J.B. Holt: Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems. J. Am. Ceram. Soc. 72, 2318 (1989).

    Article  CAS  Google Scholar 

  7. J.C. LaSalvia, D.K. Kim, R.A. Lipsett, and M.A. Meyers: Combustion synthesis in the Ti-C-Ni-Mo system. Part I. Micromechanisms. Metall. Mater. Trans. A 26, 3001 (1995).

    Article  Google Scholar 

  8. J.C. LaSalvia and M.A. Meyers: Combustion synthesis in the Ti-C-Ni-Mo system: Part II. Analysis. Metall. Mater. Trans. A 26, 3011 (1995).

    Article  Google Scholar 

  9. S.K. Mishra, S.K. Das, A.K. Ray, and P. Ramchandrarao: Effect of nickel on sintering of self-propagating high-temperature synthesis produced titanium carbide. J. Mater. Res. 14, 3594 (1999).

    Article  CAS  Google Scholar 

  10. J. Wong, E.M. Larson, J.B. Holt, P.A. Waide, B. Rupp, and R. Frahm: Time-resolved x-ray diffraction study of solid combustion reactions. Science 249, 1406 (1990).

    Article  CAS  Google Scholar 

  11. Q.C. Fan, H.F. Chai, and Z.H. Jin: Role of iron addition in combustion synthesis of TiC-Fe cermet. J. Mater. Sci. 32, 4319 (1997).

    Article  CAS  Google Scholar 

  12. I.J. Shon and Z.A. Munir: Synthesis of TiC, TiC-Cu composites, and TiC-Cu functionally graded materials by electrothermal combustion. J. Am. Ceram. Soc. 81, 3243 (1998).

    Article  CAS  Google Scholar 

  13. L. Klinger, I. Gotman, and D. Horvitz: In situ processing of TiB2/TiC ceramic composites by thermal explosion under pressure: Experimental study and modeling. Mater. Sci. Eng., A 302, 92 (2001).

    Article  Google Scholar 

  14. D. Atong and D.E. Clark: Ignition behavior and characteristics of microwave-combustion synthesized Al2O3–TiC powders. Ceram. Int. 30, 1909 (2004).

    Article  CAS  Google Scholar 

  15. J.H. Lee, S.K. Ko, and C.W. Won: Combustion characteristics of TiO2/Al/C system. Mater. Res. Bull. 36, 1157 (2001).

    Article  CAS  Google Scholar 

  16. Y. Choi and S.W. Rhee: Reaction of TiO2-Al-C in the combustion synthesis of TiC-Al2O3 composite. J. Am. Ceram. Soc. 78, 986 (1995).

    Article  CAS  Google Scholar 

  17. R. Koc: Kinetic and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture. J. Mater. Sci. 33, 1049 (1998).

    Article  CAS  Google Scholar 

  18. M. Eslamloo-Grami and Z.A. Munir: Effect of porosity on the combustion synthesis of titanium nitride. J. Am. Ceram. Soc. 73, 1235 (1990).

    Article  CAS  Google Scholar 

  19. M. Eslamloo-Grami and Z.A. Munir: Effect of nitrogen pressure and diluent content on the combustion synthesis of titanium nitride. J. Am. Ceram. Soc. 73, 2222 (1990).

    Article  CAS  Google Scholar 

  20. C.C. Agrafiotis, J.A. Puszynski, and V. Hlavacek: Experimental study on the synthesis of titanium and tantalum nitrides in the self-propagating regime. Combust. Sci. Technol. 76, 187 (1991).

    Article  CAS  Google Scholar 

  21. A.G. Merzhanov and I.P. Borovinskaya: Self-propagating hightemperature sysnthesis of inoganic compounds. Dokl. Akad. Nauk 204, 429 (1972).

    Google Scholar 

  22. C.L. Yeh and H.C. Chuang: Experimental studies on selfpropagating combustion synthesis of niobium nitride. Ceram. Int. 30, 733 (2004).

    Article  CAS  Google Scholar 

  23. C.L. Yeh, E.W. Liu, and Y.C. Chang: Effect of preheating on synthesis of tantalum nitride by self-propagating combustion. J. Eur. Ceram. Soc. 24, 3807 (2004).

    Article  CAS  Google Scholar 

  24. Y.J. Liang and Y.C. Che: Handbook of Thermodynamic Data of Inorganics (Northeastern University Press, Shenyang, 1993).

    Google Scholar 

  25. I. Barin: Thermochemical Data of Pure Substances, 2nd ed. (VCH GmbH, Weinheim, Germany, 1993).

    Google Scholar 

  26. Y.F. Yang, H.Y. Wang, Y.H. Liang, R.Y. Zhao, and Q.C. Jiang: Effects of C particle size on the ignition and combustion characteristics of the SHS reaction in the 20wt%Ni-Ti-C system. J. Alloys Compd. 460, 276 (2008).

    Article  CAS  Google Scholar 

  27. M. Kakazey, M. Vlasova, J.G. Gonzalez-Rodriguez, M. Dominguez-Patino, and R. Leder: X-ray and EPR study of reactions between B4C and TiO2. Mater. Sci. Eng., A 418, 111 (2006).

    Article  Google Scholar 

  28. S. Adachi, T. Wada, T. Mihara, Y. Miyamoto, M. Koizumi, and O. Yamada: Fabrication of titanium carbide ceramics by highpressure self-combustion sintering of titanium powder and carbon fiber. J. Am. Ceram. Soc. 72, 805 (1989).

    Article  CAS  Google Scholar 

  29. J.G. Xu, B.L. Zhang, and G.J. Jiang: Synthesis of SiCw/MoSi2 powder by the “chemical oven” self-propagating combustion method. Ceram. Int. 32, 633 (2006).

    Article  CAS  Google Scholar 

  30. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  31. J.B. Holt and Z.A. Munir: Combution synthesis of titanium carbide: Theory and experiment. J. Mater. Sci. 21, 251 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Chuan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YF., Wang, HY., Wang, JG. et al. Ignition and reaction mechanisms of thermal explosion reaction in the Ni-Ti-C system under air and Ar. Journal of Materials Research 24, 3197–3205 (2009). https://doi.org/10.1557/jmr.2009.0370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0370

Navigation