Skip to main content
Log in

Measuring the elastic modulus and residual stress of freestanding thin films using nanoindentation techniques

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new method is proposed to determine the elastic modulus and residual stress of freestanding thin films based on nanoindentation techniques. The experimentally measured stiffness-displacement response is applied to a simple membrane model that assumes the film deformation is dominated by stretching as opposed to bending. Dimensional analysis is used to identify appropriate limitations of the proposed model. Experimental verification of the method is demonstrated for Al/0.5 wt% Cu films nominally 22 µm wide, 0.55 µm thick, and 150, 300, and 500 µm long. The estimated modulus for the four freestanding films match the value measured by electrostatic techniques to within 2%, and the residual stress to within 19.1%. The difference in residual stress can be completely accounted for by thermal expansion and a modest change in temperature of 3 °C. Numerous experimental pitfalls are identified and discussed. Collectively, these data and the technique used to generate them should help future investigators make more accurate and precise measurements of the mechanical properties of freestanding thin films using nanoindentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Spearing: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48(1), 179 (2000).

    CAS  Google Scholar 

  2. W.D. Nix: Mechanical-properties of thin films. Metall. Trans. A 20(11), 2217 (1989).

    Google Scholar 

  3. H.B. Huang and F. Spaepen: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48(12), 3261 (2000).

    CAS  Google Scholar 

  4. S.D. Senturia: Microsystem Design (Kluwer Publishers, Boston, 2001).

    Google Scholar 

  5. M.A. Haque and M.T.A. Saif: Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension. Scr. Mater. 47(12), 863 (2002).

    CAS  Google Scholar 

  6. D. Heinen, H.G. Bohn and W. Schilling: On the mechanical strength of freestanding and substrate-bonded Al thin-films. J. Appl. Phys. 77(8), 3742 (1995).

    CAS  Google Scholar 

  7. D.T. Read: Young’s modulus of thin films by speckle interferometry. Meas. Sci. Technol. 9(4), 676 (1998).

    CAS  Google Scholar 

  8. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).

    CAS  Google Scholar 

  9. J.L. Hay and G.M. Pharr: Instrumented indentation testing, in ASM Handbook, vol. 8, edited by H. Kuhn and D. Medlun (ASM International, Materials Park, OH, 2000), p. 232.

    Google Scholar 

  10. E.G. Herbert, W.C. Oliver and G.M. Pharr: On the measurement of yield strength by spherical indentation. Philos. Mag. 86(33–35), 5521 (2006).

    CAS  Google Scholar 

  11. B. Taljat and G.M. Pharr: Measurement of residual stress by load and depth sensing spherical indentation, in Thin Films—Stresses and Mechanical Properties VIII, edited by R. Vinci, O. Kraft, N. Moody, P. Besser, and E. Shaffer, II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 2000), p. 519.

    Google Scholar 

  12. G.M. Pharr, D.S. Harding and W.C. Oliver: Measurement of fracture toughness in thin films and small volumes using nanoindentation methods, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by M. Nastasi, D. Parkin, and H. Gleiter (Nato ASI Series E: App. Sci. 233, Kluwer Publishers, Boston}, 1993), p. 449.

    Google Scholar 

  13. B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30(3), 601 (1999).

    Google Scholar 

  14. M.T. Northen and K.L. Turner: Meso-scale adhesion testing of integrated micro- and nano-scale structures. Sens. Actuators, A 130, 583 (2006).

    Google Scholar 

  15. M.R. VanLandingham: Review of instrumented indentation. J. Res. Nat. Inst. Stand. Technol. 108(4), 249 (2003).

    Google Scholar 

  16. M.L. Oyen and R.F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18(1), 139 (2003).

    CAS  Google Scholar 

  17. C.A. Tweedie and K.J. Van Vliet: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21(6), 1576 (2006).

    CAS  Google Scholar 

  18. E.G. Herbert, W.C. Oliver and G.M. Pharr: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 41(7), 074021 (2008).

    Google Scholar 

  19. O. Kraft and C.A. Volkert: Mechanical testing of thin films and small structures. Adv. Eng. Mater. 3(3), 99 (2001).

    CAS  Google Scholar 

  20. R.D. Emery and G.L. Povirk: Tensile behavior of free-standing gold films. Part I. Coarse-grained films. Acta Mater. 51(7), 2067 (2003).

    CAS  Google Scholar 

  21. R.D. Emery and G.L. Povirk: Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater. 51(7), 2079 (2003).

    CAS  Google Scholar 

  22. D.T. Read and J.W. Dally: A new method for measuring the strength and ductility of thin-films. J. Mater. Res. 8(7), 1542 (1993).

    CAS  Google Scholar 

  23. D. Lee, X. Wei, X. Chen, M. Zhao, S.C. Jun, J. Hone, E.G. Herbert, W.C. Oliver and J.W. Kysar: Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scr. Mater. 56(5), 437 (2007).

    CAS  Google Scholar 

  24. L. Wang and B.C. Prorok: Investigation of the influence of grain size, texture and orientation on the mechanical behavior of freestanding polycrystalline gold films, in Mechanics of Nano-scale Materials and Devices, edited by A. Misra, J.P. Sullivan, H. Huang, K. Lu, and S. Asif (Mater. Res. Soc. Symp. Proc. 924E, Warrendale, PA, 2006), 0924–Z03.

    Google Scholar 

  25. M.P. de Boer, F.W. DelRio and M.S. Baker: On-chip test structure suite for free-standing metal film mechanical property testing, Part I—Analysis. Acta Mater. 56(14), 3344 (2008).

    Google Scholar 

  26. M.P. de Boer, A.D. Corwin, P.G. Kotula, M.S. Baker, J.R. Michael, G. Subhash and M.J. Shaw: On-chip test structure suite for free-standing metal film mechanical property testing, Part II—Experiments. Acta Mater. 56(14), 3313 (2008).

    Google Scholar 

  27. T.Y. Zhang, Y.J. Su, C.F. Qian, M.H. Zhao and L.Q. Chen: Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Mater. 48(11), 2843 (2000).

    CAS  Google Scholar 

  28. H.D. Espinosa, B.C. Prorok and M. Fischer: A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 51(1), 47 (2003).

    CAS  Google Scholar 

  29. Y.H. Huh, D. Kim, J.H. Hahn, G.S. Kim, C.D. Kee, S.C. Yeon and Y.H. Kim: Observation of micro-tensile behavior of thin film TiN and Au using ESPI technique, in Thin Films—Stresses and Mechanical Properties XI, edited by T.E. Buchheit, A.M. Minor, R. Spolenak, and K. Takashima (Mater. Res. Soc. Symp. Proc. 875, Warrendale, PA, 2005), O4.15.

    Google Scholar 

  30. M.B. Sinclair, M.P. de Boer and A.D. Corwin: Long-working-distance incoherent-light interference microscope. Appl. Opt. 44 (36), 7714 (2005).

    Google Scholar 

  31. L. Wang and B.C. Prorok: Characterization of the strain rate dependent behavior of nanocrystalline gold films. J. Mater. Res. 23(1), 55 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik G. Herbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbert, E.G., Oliver, W.C., de Boer, M.P. et al. Measuring the elastic modulus and residual stress of freestanding thin films using nanoindentation techniques. Journal of Materials Research 24, 2974–2985 (2009). https://doi.org/10.1557/jmr.2009.0360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0360

Navigation