Skip to main content

Fracture Properties of MEMS/NEMS Thin Films

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

  • 247 Accesses

Abstract

Thin film mechanical property evaluation has become increasingly important for micro devices. To assure the reliability of the devices and to predict the lifetime, fracture properties of thin films need to be investigated. Microtensile testing is a powerful technique to characterize the mechanical and fracture properties of microscale thin films. But the specimen preparation always causes a difficulty. The bulge test, as a relatively simple, fast, and precise method, is extended to the determination of the fracture properties of thin films, such as bending stiffness and prestress of the membrane material, the Young’s modulus, and fracture strength of single layer film and bilayer films. An accurate model describing load-deflection response is applied on thin films made of silicon nitride, silicon carbide, and composite diaphragms of silicon nitride grown on top of thermal silicon oxide films. Fracture reference stresses were computed according to the Weibull model for brittle fracture by integrating the membrane stress over the edge, surface, and volume of the samples, corresponding respectively to the assumption of dominant edge, surface, and volume flaws. This method is very efficient and able to quantify fracture parameters of single and multilayer films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Espinosa HD, Peng B, Moldovan N, Friedmann TA, Xiao X, Mancini DC, Auciello O, Carlisle J, Zorman CA, Mehregany M (2006) Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon. Appl Phys Lett 89(7):073–111

    Article  Google Scholar 

  • Fu XA, Dunning JL, Zorman CA, Mehregany M (2005) Measurement of residual stress and elastic modulus of polycrystalline 3C-SiC films deposited by low-pressure chemical vapor deposition. Thin Solid Films 492(1/2):195–202

    Article  Google Scholar 

  • Gaspar J, Ruther P, Paul O (2007) Mechanical characterization of thin-film composites using the load-deflection response of multilayer membranes—elastic and fracture properties. In: Proceedings of materials research social symposium, vol 977, pp 91–96

    Google Scholar 

  • Gerlach G, Schroth A, Pertsch P (1996) Influence of clamping conditions on microstructure compliance. Sens Mater 8(2):79–98

    Google Scholar 

  • Jaccodine RJ, Schlegel WA (1966) Measurement of strains at Si–SiO2 interface. J Appl Phys 37(6):2429–2434

    Article  Google Scholar 

  • Jackson KM, Dunning J, Zorman C, Sharpe WN Jr (2005) Mechanical properties of epitaxial 3C silicon carbide thin films. J Microelectromech Syst 14(4):664–672

    Article  Google Scholar 

  • Kahn H, Tayebi N, Ballarini R, Mullen RL, Heuer AH (2000) Waferlevel strength and fracture toughness testing of surface-micromachined MEMS devices. In: Proceedings of materials research social symposium, vol 605, pp 25–30

    Google Scholar 

  • Landau L, Lifshitz EM (1986) Theory of elasticity, ch. 2. Pergamon, Oxford

    Google Scholar 

  • Nemeth N, Jadaan O, Palko J, Mitchell J, Zorman CA 2001 Structural modeling and probabilistic characterization of MEMS pressure sensor membranes. In: Proceedings MEMS: mechanical measurement, social experimental mechanical symposium, Portland, p 46

    Google Scholar 

  • Paul O, Baltes H (1999) Mechanical behavior and sound generation efficiency of prestressed, elastically clamped and thermomechanically driven thin film sandwiches. J Micromech Microeng 9(1):19–29

    Article  Google Scholar 

  • Paul O, Gaspar J (2007) Thin-film characterization using the bulge test. In: Tabata O, Tsuchiya T (eds) Reliability of MEMS. Weinheim: Wiley-VCH, , ch. 3, pp. 67–122

    Google Scholar 

  • Petersen KE (1978) Dynamic micromechanics on silicon: techniques and devices. IEEE Trans Electron Devices ED-25(10):1241–1250

    Article  Google Scholar 

  • Petersen KE, Guarnieri CR (1979) Young’s modulus measurements of thin films using micromechanics. J Appl Phys 50(11):6761–6766

    Article  Google Scholar 

  • Pourahmadi F, Gee D, Petersen K (1991) The effect of corner radius of curvature on the mechanical strength of micromachined single-crystal silicon structure. In: Technical digest of sixth international conference on solid-state sensors and actuators (Transducers’91), New York, pp 197–200

    Google Scholar 

  • Sobek D, Young AM, Gray ML, Senturia SD (1993) A microfabricated flow chamber for optical measurements in fluids. In: Proceedings MEMS workshop, fort lauderdale, Feb 1993, pp 219–224

    Google Scholar 

  • Soderkvist J (1993) Similarities between piezoelectric, thermal and other internal means of exciting vibrations. J Micromech Microeng 3(1):24–31

    Article  Google Scholar 

  • Tabata O, Kawahata K, Sugiyama S, Igarashi I (1989) Mechanical property measurements of thin films using load-deflection of composite rectangular membranes. Sensors Actuators 20(1/2):135–141

    Article  Google Scholar 

  • Tsuchiya T, Tabata O, Sakata J, Taga Y (1998) Specimen size effect on tensile strength of surface micromachined polycrystalline silicon thin films. J Microelectromech Syst 7:106–113

    Article  Google Scholar 

  • Walker JA, Gabriel KJ, Mehregany M (1991) Mechanical integrity of polysilicon films exposed to hydrofluric acid solutions. J Electron Mater 20:665–670

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18(3):293–297

    MATH  Google Scholar 

  • Weihs TP, Hong S, Bravman JC, Nix WD (1988) Mechanical deflection of cantilever microbeams: a new technique for testing the mechanical properties of thin films. J Mater Res 3(5):931–942

    Article  Google Scholar 

  • Xiang Y, McKinnell J, Ang W-M, Vlassak JJ (2007) Measuring the fracture toughness of ultra-thin films with application to AlTa coatings. Int J Fract 144(3):173–179

    Article  Google Scholar 

  • Yang JL, Paul O (2002) Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes. Sens Actuator A, Phys 97/98:520–526

    Article  Google Scholar 

  • Yang JL, Gaspar J, Paul O (2008) Fracture properties of LPCVD silicon nitride and thermal silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 membranes. J Microelectromech Syst 17(5):1120–1134

    Article  Google Scholar 

  • Zhou W, Yang J, Sun G, Liu X, Yang F, Li J (2008) Fracture properties fo silicon carbide thin films by bulge test of long rectangular menbrane. J Microelectromech Syst 17:453–461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinling Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Yang, J., Yuan, Q. (2017). Fracture Properties of MEMS/NEMS Thin Films. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics