Skip to main content
Log in

Sol-gel synthesis and characterization of Ag nanoparticles in ZrO2 thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

ZrO2 thin films containing silver nanoparticles were prepared using the sol-gel method with Ag to Zr molar ratios [Ag]/[Zr] = 0.11, 0.25, 0.43, 0.67, 1.00, 1.50, and 2.33. After dip coating on glass substrate, coated films were annealed at 200 and 300 °C in air. X-ray diffraction peaks corresponding to crystalline Ag were observed, but a specific peak corresponding to ZrO2 was not observed. At the molar ratio [Ag]/[Zr] = 0.25, the particle size of Ag distributed broadly centered at 17 nm for an annealing temperature of 200 °C and at 25 nm for 300 °C. The films annealed in air at 200 °C showed an absorption band centered at 450 nm because of the silver surface plasmon resonance, whereas films heated at 300 °C in air caused a red shift of the absorption to 500 nm. The absorption peak was analyzed using the effective dielectric function of Ag-ZrO2 composite films modeled with the Maxwell-Garnett expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.E. Drexler: Machine-phase nanotechnology. Sci. Am. 285, 74 (2001).

    Article  CAS  Google Scholar 

  2. D. Spurgeon: Canada unveils plans to build nanotechnology centre. Nature 412, 846 (2001).

    Article  CAS  Google Scholar 

  3. D.R. Forrest: Molecular nanotechnology. IEEE Instrum. Meas. Mag. 4, 11 (2001).

    Article  Google Scholar 

  4. S. Forster and M. Antonietti: Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater. 10, 195 (1998).

    Article  Google Scholar 

  5. M. Moffit and A. Eisenberg: Size control of nanoparticles in semiconductor-polymer composites. 1. Control via multiplet aggregation numbers in styrene-based random ionomers. Chem. Mater. 7, 1178 (1995).

    Article  Google Scholar 

  6. K. Ghosh and S.N. Maiti: Mechanical properties of silver-powderfilled polypropylene composites. J. Appl. Polym. Sci. 60, 323 (1996).

    Article  CAS  Google Scholar 

  7. R.P. Andres, J.D. Bielfeld, J.I. Henderson, D.B. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney, and R.J. Osifchin: Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1960 (1996).

    Article  Google Scholar 

  8. Y. Tian and T. Tatsuma: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).

    Article  CAS  Google Scholar 

  9. V. Subramanian, E.E. Wolf, and P.V. Kamat: Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126, 4943 (2004).

    Article  CAS  Google Scholar 

  10. H.J. Jeon, S.C. Yi, and S.G. Oh: Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials 24, 4921 (2003).

    Article  CAS  Google Scholar 

  11. C.A. Foss Jr., G.L. Hornyak, J.A. Stockert, and C.R. Martin: Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape. J. Phys. Chem. 98, 2963 (1994).

    Article  CAS  Google Scholar 

  12. S.K. Mandal, R.K. Roy, and A.K. Pal: Effect of particle shape distribution on the surface plasmon resonance of Ag–SiO2 nanocomposite thin films. J. Phys. D: Appl. Phys. 36, 261 (2003).

    Article  CAS  Google Scholar 

  13. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755 (2002).

    Article  CAS  Google Scholar 

  14. M. Mennig, M. Schmitt, and H. Schmidt: Synthesis of Ag-colloids in sol-gel derived SiO2-coatings on glass. J. Sol-Gel Sci. Technol. 8, 1035 (1997).

    CAS  Google Scholar 

  15. M. Noriaki and H. Hideo: Colloid formation effects on depth profile of implanted Ag in SiO2 glass. Appl. Phys. Lett. 63, 2050 (1993).

    Article  Google Scholar 

  16. P. Magudapathy, P. Gangopadhyay, B.K. Panigrahi, K.G.M. Nair, and S. Dhara: Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B 299, 142 (2001).

    Article  CAS  Google Scholar 

  17. I. Tanahashi, M. Yoshida, Y. Manabe, and T. Yoshida: Effects of heat treatment on Ag particle growth and optical properties in Ag/ SiO2 glass composite thin films. J. Mater. Res. 10, 362 (1995).

    Article  CAS  Google Scholar 

  18. B. Mahltig, E. Gutmann, D.C. Meyer, M. Reibold, A. Bund, and H. Böttcher: Thermal preparation and stabilization of crystalline silver particles in SiO2-based coating solutions. J. Sol-Gel Sci. Technol. 49, 202 (2009).

    Article  CAS  Google Scholar 

  19. G. MartÍnez-Castanñón, J.R. Martínez, G. Ortega Zarzosal, F. Ruiz, and M.G. Sánchez-Loredo: Optical absorption of Ag particles dispersed in a SiO2 amorphous matrix. J. Sol-Gel Sci. Technol. 36, 137 (2005).

    Article  Google Scholar 

  20. G. Zhao, H. Kozuka, and T. Yoko: Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au an Ag metal particles. Thin Solid Films 277, 147 (1996).

    Article  CAS  Google Scholar 

  21. M. Epifani, C. Giannini, L. Tapfer, and L. Vasanelli: Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. J. Am. Ceram. Soc. 83, 2385 (2000).

    Article  CAS  Google Scholar 

  22. J.C. Maxwell-Garnett: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London, Ser A. 203, 385 (1904).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moriaki Wakaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, E., Sakata, H. & Wakaki, M. Sol-gel synthesis and characterization of Ag nanoparticles in ZrO2 thin films. Journal of Materials Research 24, 2541–2546 (2009). https://doi.org/10.1557/jmr.2009.0314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0314

Navigation