Skip to main content
Log in

A constitutive theory and modeling on deviation of shear band inclination angles in bulk metallic glasses

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A constitutive theory for metallic glasses is established that is based mainly on the Drucker-Prager model and a free-volume theory. The primary emphasis of this theory is on volume dilatation and its consequences on mechanical responses in metallic glasses that have been known from studies in both experiments and atomistic simulations. We also implemented the constitutive theory in a finite element modeling scheme and conducted numerical modeling of deformation of a metallic glass under plane-strain tension and compression. In particular, we focused our attention on the deviation of the shear band inclination angle, a commonly observed phenomenon for metallic glasses. We found very good qualitative agreement with available experimental data on shear band inclination angle and stress-strain relation. We also give a detailed discussion on different constitutive models, in particular the Coulomb-Mohr model, in the context of predicting the shear band inclination angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Davis and Y.T. Yeow: Flow and fracture of a Ni-Fe metallic-glass. J. Mater. Sci. 15, 230 (1980).

    Article  CAS  Google Scholar 

  2. P.E. Donovan: Compressive deformation of amorphous Pd40Ni40P20. Mater. Sci. Eng. 98, 487 (1988).

    Article  CAS  Google Scholar 

  3. P.E. Donovan: A yield criterion for Pd40Ni40P20 metallic-glass. Acta Metall. 37, 445 (1989).

    Article  CAS  Google Scholar 

  4. C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811 (1998).

    Article  Google Scholar 

  5. P. Lowhaphandu, S.L. Montgomery, and J.J. Lewandowski: Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy. Scr. Mater. 41, 19 (1999).

    Article  CAS  Google Scholar 

  6. K.M. Flores and R.H. Dauskardt: Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater. 49, 2527 (2001).

    Article  CAS  Google Scholar 

  7. K.M. Flores and R.H. Dauskardt: Crack-tip plasticity in bulk metallic glasses. Mater. Sci. Eng., A 319, 511 (2001).

    Article  Google Scholar 

  8. R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001).

    Article  CAS  Google Scholar 

  9. W.J. Wright, R. Saha, and W.D. Nix: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42, 642 (2001).

    Article  CAS  Google Scholar 

  10. M. Li, J. Eckert, L. Kecskes, and J. Lewandowski: Mechanical properties of metallic glasses and applications—Introduction. J. Mater. Res. 22, 255 (2007).

    Article  CAS  Google Scholar 

  11. A.C. Lund and C.A. Schuh: The Mohr-Coulomb criterion from unit shear processes in metallic glass. Intermetallics 12, 1159 (2004).

    Article  CAS  Google Scholar 

  12. A.C. Lund and C.A. Schuh: Yield surface of a simulated metallic glass. Acta Mater. 51, 5399 (2003).

    Article  CAS  Google Scholar 

  13. Z.F. Zhang, G. He, J. Eckert, and L. Schultz: Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505 (2003).

    Article  CAS  Google Scholar 

  14. M. Zhao and M. Li: Unpublished results.

  15. L. Anand and C. Su: A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J. Mech. Phys. Solids 53, 1362 (2005).

    Article  CAS  Google Scholar 

  16. P. Tandaiya, R. Narasimhan, and U. Ramamurty: Mode I crack tip fields in amorphous materials with application to metallic glasses. Acta Mater. 55, 6541 (2007).

    Article  CAS  Google Scholar 

  17. Q.K. Li and M. Li: Atomic scale characterization of shear bands in an amorphous metal. Appl. Phys. Lett. 88, 241903 (2006).

    Article  CAS  Google Scholar 

  18. Q.K. Li and M. Li: Free volume evolution in metallic glasses subjected to mechanical deformation. Mater. Trans. 48, 1816 (2007).

    Article  CAS  Google Scholar 

  19. M. Wakeda, Y. Shibutani, S. Ogata, and J. Park: Relationship between local geometrical factors and mechanical properties for Cu-Zr amorphous alloys. Intermetallics 15, 139 (2007).

    Article  CAS  Google Scholar 

  20. A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, and A. Kvick: Excess free volume in metallic glasses measured by x-ray diffraction. Acta Mater. 53, 1611 (2005).

    Article  CAS  Google Scholar 

  21. K.M. Flores, D. Suh, R.H. Dauskardt, P. Asoka-Kumar, P.A. Sterne, and R.H. Howell: Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy. J. Mater. Res. 17, 1153 (2002).

    Article  CAS  Google Scholar 

  22. M. Heggen, F. Spaepen, and M. Feuerbacher: Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys. 97, 033506 (2005).

    Article  CAS  Google Scholar 

  23. R.S. Vallery, M. Liu, D.W. Gidley, M.E. Launey, and J.J. Kruzic: Characterization of fatigue-induced free volume changes in a bulk metallic glass using positron annihilation spectroscopy. Appl. Phys. Lett. 91, 261908 (2007).

    Article  CAS  Google Scholar 

  24. H. Eyring: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936).

    Article  CAS  Google Scholar 

  25. F. Spaepen: Microscopic mechanism for steady-state inhomoge-neous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  26. Q.K. Li and M. Li: Atomistic simulations of correlations between volumetric change and shear softening in amorphous metals. Phys. Rev. B: Condens. Matter 75, 094101 (2007).

    Article  CAS  Google Scholar 

  27. M. Zhao and M. Li: Interpreting the change in shear band inclination angle in metallic glasses. Appl. Phys. Lett. 93, 241906 (2008).

    Article  CAS  Google Scholar 

  28. D.C. Drucker and W. Prager: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10, 157 (1952).

    Article  Google Scholar 

  29. P.S. Steif, F. Spaepen, and J.W. Hutchinson: Strain localization in amorphous metals. Acta Metall. 30, 447 (1982).

    Article  CAS  Google Scholar 

  30. R. Huang, Z. Suo, J.H. Prevost, and W.D. Nix: Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Solids 50, 1011 (2002).

    Article  Google Scholar 

  31. Y.F. Gao: An implicit finite element method for simulating inho-mogeneous deformation and shear bands of amorphous alloys based on the free-volume model. Modell. Simul. Mater. Sci. Eng. 14, 1329 (2006).

    Article  CAS  Google Scholar 

  32. J.D. Eshelby: The continuum theory of lattice defects, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1956), p. 79.

    Google Scholar 

  33. W.F. Chen: Plasticity in Reinforced Concrete (McGraw-Hill, New York, 1982), p. 216.

    Google Scholar 

  34. P.B. Bowden and J.A. Jukes: Plastic-flow of isotropic polymers. J. Mater. Sci. 7, 52 (1972).

    Article  CAS  Google Scholar 

  35. R. Hill: On discontinuous plastic states, with special reference to localized necking in thin sheets. J. Mech. Phys. Solids 1, 19 (1952).

    Article  Google Scholar 

  36. Y.Z. Guo and M. Li: Unpublished results.

  37. Q.K. Li and M. Li: Assessing the critical sizes for shear band formation in metallic glasses from molecular dynamics simulation. Appl. Phys. Lett. 91, 231905 (2007).

    Article  CAS  Google Scholar 

  38. L.A. Davis: Plastic instability in a metallic glass. Scr. Metall. 9, 339 (1975).

    Article  CAS  Google Scholar 

  39. H. Kimura and T. Masumoto: Deformation and fracture of an amorphous Pd-Cu-Si alloy in V-notch bending tests. 1. Model mechanics of inhomogeneous plastic-flow in non-strain hardening solid. Acta Metall. 28, 1663 (1980).

    Article  CAS  Google Scholar 

  40. H.J. Leamy, H.S. Chen, and T.T. Wang: Plastic-flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972).

    Article  CAS  Google Scholar 

  41. C.A. Pampillo and D.E. Polk: Strength and fracture characteristics of Fe, Ni-Fe and Ni-base glasses at various temperatures. Acta Metall. 22, 741 (1974).

    Article  CAS  Google Scholar 

  42. L.A. Davis and S. Kavesh: Deformation and fracture of an amorphous metallic alloy at high-pressure. J. Mater. Sci. 10, 453 (1975).

    Article  CAS  Google Scholar 

  43. R.D. Conner, A.J. Rosakis, W.L. Johnson, and D.M. Owen: Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scr. Mater. 37, 1373 (1997).

    Article  CAS  Google Scholar 

  44. H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous-alloys. Scr. Metall. Mater. 30, 429 (1994).

    Article  CAS  Google Scholar 

  45. T.W. Webb, X.H. Zhu, and E.C. Aifantis: A simple method for calculating shear band angles for pressure sensitive plastic materials. Mech. Res. Commun. 24, 69 (1997).

    Article  Google Scholar 

  46. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Overview No. 144—Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  47. C.H. Hsueh, H. Bei, C.T. Liu, P.F. Becher, and E.P. George: Shear fracture of bulk metallic glasses with controlled applied normal stresses. Scr. Mater. 59, 111 (2008).

    Article  CAS  Google Scholar 

  48. M. Kuroda and T. Kuwabara: Shear-band development in polycrystal-line metal with strength-differential effect and plastic volume expansion. Proc. R. Soc. London, Ser. A 458, 2243 (2002).

    Article  Google Scholar 

  49. P. Thamburaja and R. Ekambaram: Coupled thermo-mechanical modelling of bulk-metallic glasses: Theory, finite-element simulations and experimental verification. J. Mech. Phys. Solids 55, 1236 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, M., Li, M. A constitutive theory and modeling on deviation of shear band inclination angles in bulk metallic glasses. Journal of Materials Research 24, 2688–2696 (2009). https://doi.org/10.1557/jmr.2009.0306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0306

Navigation