Skip to main content
Log in

Luminescent silica nanotubes and nanowires: Preparation from cellulose whisker templates and investigation of irradiation-induced luminescence

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Luminescent silica nanotubes and nanowires were fabricated from cellulose whisker templates by sol-gel processing. The cellulose templates were removed by calcination at 650 °C to generate silica nanotubes with diameters of 15 nm and lengths up to 500 nm. At temperatures of 900 °C the core region previously occupied by the cellulose template was closed yielding silica nanowires. Cathodoluminescence spectra of the silica nanotubes and nanowires were measured in the transmission electron microscope during irradiation with 150 keV electrons. A blue emission at 450 nm was observed for the silica nanowires calcined at 900 °C. This luminescence was found to be related to defects induced by electron irradiation and was investigated in situ as a function of irradiation dose. The as-synthesized and 650 °C calcined nanowires and nanotubes showed a fast decay of the signal. The observed irradiation dose dependent changes in the luminescence spectra will be discussed in terms of defect formation and transformation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Patzke, F. Krumeich, and R. Nesper: Oxidic nanotubes and nanorods-Anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed. 41, 2446 (2002).

    Article  CAS  Google Scholar 

  2. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur: Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816 (2003).

    Article  CAS  Google Scholar 

  3. Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima: Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281, 973 (1998).

    Article  CAS  Google Scholar 

  4. D.T. Mitchell, S.B. Lee, L. Trofin, N. Li, T.K. Nevanen, H. Soderlund, and C.R. Martin: Smart nanotubes for bioseparation and biocatalysis. J. Am. Chem. Soc. 124, 11864 (2002).

    Article  CAS  Google Scholar 

  5. B. He, S.J. Son, and S.B. Lee: Shape-coded silica nanotubes for biosensing. Langmuir 22, 8263 (2006).

    Article  CAS  Google Scholar 

  6. D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Quian, G.C. Xiong, and S.Q. Feng: Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73, 3076 (1998).

    Article  CAS  Google Scholar 

  7. X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, and J.J. Du: Preparation and photoluminescence properties of amorphous silica nanowires. Chem. Phys. Lett. 336, 53 (2001).

    Article  CAS  Google Scholar 

  8. J. Jang and H. Yoon: Novel fabrication of size-tunable silica nanotubes using a reverse-microemulsion-mediated sol-gel method. Adv. Mater. 16, 799 (2004).

    Article  CAS  Google Scholar 

  9. H.J. Chang, Y.F. Chen, H.P. Lin, and C.Y. Mou: Strong visible photoluminescence from SiO2 nanotubes at room temperature. Appl. Phys. Lett. 78, 3791 (2001).

    Article  CAS  Google Scholar 

  10. M. Zhang, E. Ciocan, Y. Bando, K. Wada, L.L. Cheng, and P. Pirouz: Bright visible photoluminescence from silica nanotube flakes prepared by the sol-gel template method. Appl. Phys. Lett. 80, 491 (2002).

    Article  CAS  Google Scholar 

  11. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama: Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation. Phys. Rev. B 45, 586 (1992).

    Article  CAS  Google Scholar 

  12. L.S. Liao, X.M. Bao, X.Q. Zheng, N.S. Li, and N.B. Min: Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon. Appl. Phys. Lett. 68, 850 (1996).

    Article  CAS  Google Scholar 

  13. J.H. Stathis and M.A. Kastner: Time-resolved photoluminescence in amorphous silicon dioxide. Phys. Rev. B 35, 2972 (1987).

    Article  CAS  Google Scholar 

  14. L. Skuja: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 16, 239 (1998).

    Google Scholar 

  15. R. Tohmon, Y. Shimogaichi, H. Mizuno, and Y. Ohki: 2.7 eV luminescence in as-manufactured high-purity silica glass. Phys. Rev. Lett. 62, 1388 (1989).

    Article  CAS  Google Scholar 

  16. L.N. Skuja, A.N. Streletsky, and A.B. Pakovich: A new intrinsic defect in amorphous SiO2: Twofold coordinated silicon. Solid State Commun. 50, 1069 (1984).

    Article  CAS  Google Scholar 

  17. K. Tanimura, C. Itoh, and N. Itoh: Optical studies of self-trapped excitons in SiO2. J. Phys. C: Solid State Phys. 21, 1869 (1988).

    Article  CAS  Google Scholar 

  18. S.W. McKnight and E.D. Palik: Cathodoluminescence of SiO2 films. J. Non-Cryst. Solids 40, 595 (1980).

    Article  CAS  Google Scholar 

  19. K. Tanimura, K. Tanaka, and N. Itoh: Creation of quasistable lattice defects by electronic excitation in SiO2. Phys. Rev. Lett. 51, 423 (1983).

    Article  CAS  Google Scholar 

  20. A.J. Miller, R.G. Leisure, V.A. Mashkov, and F.L. Galeener: Dominant role of E’ centers in x-ray-induced, visible luminescence in high-purity amorphous silicas. Phys. Rev. B 53, R8818 (1996).

    Article  CAS  Google Scholar 

  21. H. Imai, K. Arai, H. Imagawa, H. Hosono, and Y. Abe: Two types of oxygen-deficient centers in synthetic silica glass. Phys. Rev. B 38, 12772 (1988).

    Article  CAS  Google Scholar 

  22. T.E. Tsai, D.L. Griscom, and E.J. Friebele: Mechanism of intrinsic Si E’-center photogeneration in high-purity silica. Phys. Rev. Lett. 61, 444 (1988).

    Article  CAS  Google Scholar 

  23. M. Watanabe, S. Juodkazis, H.B. Sun, S. Matsuo, and H. Misawa: Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica. Phys. Rev. B 60, 9959 (1999).

    Article  CAS  Google Scholar 

  24. Z.A. Weinberg, G.W. Rubloff, and E. Bassous: Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films. Phys. Rev. B 19, 3107 (1979).

    Article  CAS  Google Scholar 

  25. M.A. StevensKalceff: Cathodoluminescence microcharacteriza-tion of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide. Phys. Rev. B 57, 5674 (1998).

    Article  Google Scholar 

  26. R. Salh, A. von Czarnowski, M.V. Zamoryanskaya, E.V. Kole-snikova, and H-J. Fitting: Cathodoluminescence of SiOx understoichiometric silica layers. Phys. Status Solidi A 203, 2049 (2006).

    Article  CAS  Google Scholar 

  27. H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa: Generation of E’ centers and oxygen hole centers in synthetic silica glasses by γ irradiation. Phys. Rev. B 48, 3116 (1993).

    Article  CAS  Google Scholar 

  28. F.L. Galeener, D.B. Kerwin, A.J. Miller, and J.C. Mikkelsen Jr: X-ray creation and activation of electron spin resonance in vitreous silica. Phys. Rev. B 47, 7760 (1993).

    Article  CAS  Google Scholar 

  29. V.A. Mashkov, W.R. Austin, L. Zhang, and R.G. Leisure: Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2. Phys. Rev. Lett. 76, 2926 (1996).

    Article  CAS  Google Scholar 

  30. D.L. Griscom: Defect structure of glasses. J. Non-Cryst. Solids 73, 51 (1985).

    Article  CAS  Google Scholar 

  31. C.H. Rüscher, I. Bannat, A. Feldhoff, L. Ren, and M. Wark: SiO2 nanotubes with nanodispersed Pt in the walls. Microporous Meso-porous Mater. 99, 30 (2007).

    Article  CAS  Google Scholar 

  32. J. Wang, C.K. Tsung, W. Hong, Y. Wu, J. Tang, and G.D. Stucky: Synthesis of mesoporous silica nanofibers with controlled pore architectures. Chem. Mater. 16, 5169 (2004).

    Article  CAS  Google Scholar 

  33. Y. Ono, Y. Kanekiyo, K. Inoue, J. Hojo, M. Nango, and S. Shinkai: Novel hollow fiber silica using collagen fibers as a template. Chem. Lett. (Jpn.) 28, 475 (1999).

    Article  Google Scholar 

  34. L. Huang, H. Wang, C.Y. Hayashi, B. Tian, D. Zhao, and Y. Yan: Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. J. Mater. Chem. 13, 666 (2003).

    Article  CAS  Google Scholar 

  35. C. Zollfrank, H. Scheel, and P. Greil: Regioselectively ordered silica nanotubes by molecular templating. Adv. Mater. 19, 984 (2007).

    Article  CAS  Google Scholar 

  36. B.G. Ranby: The colloidal properties of cellulose micelles. Discuss. Faraday Soc. 11, 158 (1951).

    Article  Google Scholar 

  37. D. Klemm, B. Philipp, T. Heinze, U. Heinze, and W. Wagenknecht: Comprehensive Cellulose Chemistry, Vol. 1 (Wiley-VCH, Weinheim, Germany, 1998), pp. 15–24.

    Google Scholar 

  38. M.A.S.A. Samir, F. Alloin, and A. Dufresne: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612 (2005).

    Article  CAS  Google Scholar 

  39. X.M. Dong, J.F. Revol, and D.G. Gray: Effect of microcrystallite preparation conditions on the formation of colloid crystals on cellulose. Cellulose 5, 19 (1998).

    Article  CAS  Google Scholar 

  40. Y. Shin, I-T. Bae, B.W. Arey, and G.J. Exarhos: Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal. Mater. Lett. 61, 3215 (2007).

    Article  CAS  Google Scholar 

  41. K. Nelson and Y. Deng: The shape dependence of core-shell and hollow titania nanoparticles on coating thickness during layer-by-layer and sol-gel synthesis. Nanotechnology 17, 3219 (2006).

    Article  CAS  Google Scholar 

  42. E. Dujardin, M. Blaseby, and S. Mann: Synthesis of mesoporous silica by sol-gel mineralization of cellulose nanorod nematic suspensions. J. Mater. Chem. 13, 696 (2003).

    Article  CAS  Google Scholar 

  43. M.J.A. de Dood, B. Berhout, C.M. van Kats, A. Polman, and A. van Blaaderen: Acid-based synthesis of monodisperse rare-earth doped colloidal SiO2 spheres. Chem. Mater. 14, 2849 (2002).

    Article  CAS  Google Scholar 

  44. C.J. Brinker and G.W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990), p. 118.

    Google Scholar 

  45. J.C. Roberts: Paper Chemistry (Blackie, Glasgow, Scotland, 1996).

    Google Scholar 

  46. H-J. Fitting, T. Ziems, R. Salh, M.V. Zamoryanskaya, E.V. Kolesnikova, B. Schmidt, and A. von Czarnowski: Cathodoluminescence of wet, dry, and hydrogen-implanted silica films. J. Non-Cryst. Solids 351, 2251 (2005).

    Article  CAS  Google Scholar 

  47. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York, 1996), p. 62.

    Book  Google Scholar 

  48. R.A.B. Devine, J.J. Capponi, and J. Arndt: Oxygen-diffusion kinetics in densified, amorphous SiO2. Phys. Rev. B 35, 770 (1987).

    Article  CAS  Google Scholar 

  49. M. Goldberg, H-J. Fitting, and A. Trukhin: Cathodoluminescence and cathodoelectro-luminescence of amorphous SiO2 films. J. Non-Cryst. Solids 220, 69 (1997).

    Article  CAS  Google Scholar 

  50. H-J. Fitting, T. Barfels, A.N. Trukhin, B. Schmidt, A. Gulans, and A. von Czarnowski: Cathodoluminescence of Ge+, Si+, and O+ implanted SiO2 layers and the role of mobile oxygen in defect transformations. J. Non-Cryst. Solids 303, 218 (2002).

    Article  CAS  Google Scholar 

  51. H. Scheel, G. Frank, and H.P. Strunk: Electron radiation damage in Cu(In,Ga)Se2 analyzed in situ by cathodoluminescence in a transmission electron microscope. Phys. Status Solidi A 202, 2336 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cordt Zollfrank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheel, H., Zollfrank, C. & Greil, P. Luminescent silica nanotubes and nanowires: Preparation from cellulose whisker templates and investigation of irradiation-induced luminescence. Journal of Materials Research 24, 1709–1715 (2009). https://doi.org/10.1557/jmr.2009.0224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0224

Navigation