Skip to main content
Log in

Orientation relationships between TiB (B27), B2, and Ti3Al phases

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The orientation relationships among TiB (B27), B2, and Ti3Al phases have been investigated by transmission electron microscopy. By using the composite selected-area electron diffraction technique, the orientation relationship between TiB (B27) and B2 was determined to be [100]TiB‖[001]B2, (001)TiB‖(010)B2 and that between TiB (B27) and Ti3Al was [010]TiB‖[1120]Ti3Al, (001)TiB‖(0001)Ti3Al. These orientation relationships have been predicted precisely by the method of coincidence of reciprocal lattice points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.W. Kim: Ordered intermetallic alloys. Part III: Gamma titanium aluminides. JOM 96, 30 (1994).

    Article  Google Scholar 

  2. F. Appel, U. Sparka, and R. Wagner: Work hardening and recovery of gamma base titanium aluminides. Intermetallics 7, 325 (1999).

    Article  CAS  Google Scholar 

  3. K. Maruyama, M. Yamaguchi, G. Suzuki, H.L. Zhu, H.Y. Kim, and M.H. Yoo: Effects of lamellar boundary structural change on lamellar size hardening in TiAl alloy. Acta Mater. 52, 5185 (2004).

    Article  CAS  Google Scholar 

  4. F. Appel and R. Wagner: Microstructure and deformation of two-phase γ-titanium aluminides. Mater. Sci. Eng., R 22, 187 (1998).

    Article  Google Scholar 

  5. M. Yamaguchi, H. Inui, and K. Ito: High-temperature structural intermetallics. Acta Mater. 48, 307 (2000).

    Article  CAS  Google Scholar 

  6. H.A. Calderon, V. Garibay-Febles, M. Umemoto, and M. Yamaguchi: Mechanical properties of nanocrystalline Ti–Al–X alloys. Mater. Sci. Eng., A 329–331, 196 (2002).

    Article  Google Scholar 

  7. D. Hu: Effect of boron addition on tensile ductility in lamellar TiAl alloys. Intermetallics 10, 851 (2002).

    Article  CAS  Google Scholar 

  8. U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger: Grain refinement by low boron additions in niobium-rich TiAl-based alloys. Intermetallics 16, 969 (2008).

    Article  CAS  Google Scholar 

  9. T.T. Cheng: The mechanism of grain refinement in TiAl alloys by boron addition-an alternative hypothesis. Intermetallics 8, 29 (2000).

    Article  CAS  Google Scholar 

  10. M.E. Hyman, C. McCullough, J.J. Valencia, C.G. Levi, and R. Mehrabian: Microstructure evolution in TiAl alloys with B additions. Conventional solidification. Metall. Trans. A 20, 1847 (1989).

    Article  Google Scholar 

  11. M.E. Hyman, C. McCullough, C.G. Levi, and R. Mehrabian: Evolution of boride morphologies in TiAl-B alloys. Metall. Trans. A 22, 1647 (1991).

    Article  Google Scholar 

  12. M. De Graef, J.P.A. Lofvander, and C.G. Levi: The structure of complex monoborides in γ-TiAl alloys with Ta and B additions. Acta Metall. Mater. 39, 2381 (1991).

    Article  Google Scholar 

  13. D. Hu: Effect of composition on grain refinement in TiAl-based alloys. Intermetallics 9, 1037 (2001).

    Article  CAS  Google Scholar 

  14. C.L. Chen, W. Lu, J.P. Lin, L.L. He, G.L. Chen, and H.Q. Ye: Orientation relationship between TiB precipitate and γ-TiAl phase. Scr. Mater. 56, 441 (2007).

    Article  CAS  Google Scholar 

  15. B.J. Inkson, C.B. Boothroyd, and C.J. Humphreys: Boride morphology in a (Fe, V, B) Ti-alloy containing B2-phase. Acta Metall. Mater. 43, 1429 (1995).

    Article  CAS  Google Scholar 

  16. U. Kitkamthorn, L.C. Zhang, T.T. Aindow, and M. Aindow: The structure of ribbon borides in a Ti-44Al-4Nb-4Zr-1B alloy. Microsc. Microanal. 11(Suppl 2), 1702 (2005).

    Google Scholar 

  17. U. Kitkamthorn, L.C. Zhang, and M. Aindow: The structure of ribbon borides in a Ti-44Al-4Nb-4Zr-1B alloy. Intermetallics 14, 759 (2006).

    Article  CAS  Google Scholar 

  18. Y. Ikuhara and P. Pirouz: Orientation relationship in large mismatched bicrystals and coincidence of reciprocal lattice points (CRLP). Mater. Sci. Forum 207–209, 121 (1996).

    Article  Google Scholar 

  19. P. Pirouz, F. Ernst, and Y. Ikuhara: On epitaxy and orientation relationships in bicrystals. Diffus. Defect Data B Solid State Phenom. 59–60, 51 (1998).

    Article  Google Scholar 

  20. S. Stemmer, P. Pirouz, I. Ikuhara, and R.F. Davis: Film/substrate orientation relationship in the AIN/6H-SiC epitaxial system. Phys. Rev. Lett. 77, 1797 (1996).

    Article  CAS  Google Scholar 

  21. R. Yu, L.L. He, J.T. Guo, H.Q. Ye, and V. Lupinc: Orientation relationship and interfacial structure between ζ-Ti5Si3 precipitates and γ-TiAl intermetallics. Acta Mater. 48, 3701 (2000).

    Article  CAS  Google Scholar 

  22. M-X. Zhang and P.M. Kelly: Edge-to-edge matching model for predicting orientation relationships and habit planes—The improvements. Scr. Mater. 52, 963 (2005).

    Article  CAS  Google Scholar 

  23. M-X. Zhang and P.M. Kelly: Edge-to-edge matching and its applications. Part I. Application to the simple HCP/BCC system. Acta Mater. 53, 1073 (2005).

    Article  CAS  Google Scholar 

  24. M-X. Zhang and P.M. Kelly: Edge-to-edge matching and its applications. Part II. Application to Mg–Al, Mg–Y and Mg–Mn alloys. Acta Mater. 53, 1085 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.L., Lu, W., He, L.L. et al. Orientation relationships between TiB (B27), B2, and Ti3Al phases. Journal of Materials Research 24, 1688–1692 (2009). https://doi.org/10.1557/jmr.2009.0220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0220

Navigation