Skip to main content
Log in

Lamellar and bundled domain rotations in barium titanate

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cross-correlation of electron backscatter diffraction patterns has been used to generate rotation maps of single crystals of tetragonal barium titanate (BaTiO3) containing multiple lamellae and bundles of ≈ 90° domains. Rotation measurement angular resolutions of 0.1 mrad (0.006°) and spatial resolutions of 30 nm are demonstrated on structures with approximately 1 μm domains extending over 10s of μm. The material orientations demonstrated considerable microstructural dependence: c domains, with polarization perpendicular to a free surface, exhibited little within-domain rotation variation while a-domains, with polarization parallel to the surface, exhibited considerable within-domain variation, particularly in the larger lamellar domain structure. In both lamellar and bundled structures, the maximum ac between-domain rotation was approximately equal to the value θr ≈ 0.63° (11 mrad) predicted by a rigid rotation of tetragonal BaTiO3 unit cells across the domain boundary. However, in both structures there was gradual variation in rotation throughout, especially adjacent to domain boundaries, suggesting that a rigid rotation model predicts too abrupt a unit cell and polarization rotation. A new BaTiO3 compound defect was deduced through identification of a double integral surface rotation 2θr. The double rotation is indicative of a low-angle grain boundary terminating at a surface by a confined 90° domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Howell JA, Vaudin MD, Cook RF (2014) Orientation, stress, and strain in an (001) barium titanate single crystal with 90 lamellar domains determined using electron backscatter diffraction. J Mater Sci 49:2213–2224. https://doi.org/10.1007/s10853-013-7915-3

    Article  CAS  Google Scholar 

  2. Howell JA, Vaudin MD, Friedman LH, Cook RF (2017) Stress and strain mapping of micro-domain bundles in barium titanate using electron backscatter diffraction. J Mater Sci 52:12608–12623. https://doi.org/10.1007/s10853-017-1355-4

    Article  CAS  Google Scholar 

  3. Pan MJ, Randall CA (2010) A brief introduction to ceramic capacitors. IEEE Electr Insul Mag 26:44–50

    Article  CAS  Google Scholar 

  4. Kwei GH, Lawson AC, Billinge SJL, Cheong SW (1993) Structures of the ferroelectric phases of barium–titanate. J Phys Chem 97:2368–2377

    Article  CAS  Google Scholar 

  5. Jona F, Shirane G (1993) Ferroelectric crystals. Dover Publications Inc, New York

    Google Scholar 

  6. Arlt G (1990) Twinning in ferroelectric and ferroelastic ceramics: stress relief. J Mater Sci 25:2655–2666. https://doi.org/10.1007/BF00584864

    Article  CAS  Google Scholar 

  7. Kim S-B, Chung T-J, Kim D-Y (1993) Effect of external compressive stress on the domain configuration of barium titanate ceramics. J Eur Ceram Soc 12:147–151

    Article  CAS  Google Scholar 

  8. Haertling GH (1999) Ferroelectric ceramics: history and Technology. J Am Ceram Soc 82:797–818

    Article  CAS  Google Scholar 

  9. Hu YH, Chan HM, Wen ZX, Harmer MP (1986) Scanning electron microscopy and transmission electron microscopy of ferroelectric domains in doped BaTiO3. J Am Ceram Soc 69:594–602

    Article  CAS  Google Scholar 

  10. Tsai F, Cowley JM (1993) Observation of planar defects by reflection electron microscopy. Ultramicroscopy 52:400–403

    Article  CAS  Google Scholar 

  11. Hamazaki S-I, Shimizu F, Kojima S, Takashige M (1995) AFM observation of 90 domains of BaTiO3 butterfly crystals. J Phys Soc Jpn 64:3660–3663

    Article  CAS  Google Scholar 

  12. Takashige M, Hamazaki S-I, Nobutaka G, Shimizu F, Kojima S (1996) Atomic force microscope observation of ferroelectrics: barium titanate and Rochelle salt. Jpn J Appl Phys 35:5181–5184

    Article  CAS  Google Scholar 

  13. Pang GKH, Baba-Kishi KZ (1998) Characterization of butterfly single crystals of BaTiO3 by atomic force, optical and scanning electron microscopy techniques. J Phys D Appl Phys 31:2846–2853

    Article  CAS  Google Scholar 

  14. Melnichuk M, Wood LT (2003) Fraunhofer diffraction to determine the twin angle in single-crystal BaTiO3. Appl Optics 32:4463–4467

    Article  Google Scholar 

  15. Yoneda Y, Kohmura Y, Suzuki Y, Hamazaki S, Takashige M (2004) X-ray diffraction topography on a BaTiO3 crystal. J Phys Soc Jpn 73:1050–1053

    Article  CAS  Google Scholar 

  16. Merz WJ (1952) Domain properties in BaTiO3. Phys Rev 88:421–422

    Article  CAS  Google Scholar 

  17. Oppolzer H, Schmelz H (1983) Investigation of twin lamellae in BaTiO3 ceramics. J Am Ceram Soc 66:444–446

    Article  CAS  Google Scholar 

  18. Cheng S-Y, Ho N-J, Lu H-Y (2006) Transformation-induced twinning: the 90 and 180 ferroelectric domains in tetragonal barium titanate. J Am Ceram Soc 89:2177–2187

    CAS  Google Scholar 

  19. Forsbergh PW (1949) Domain structures and phase transitions in barium titanate. Phys Rev 76:1187–1201

    Article  CAS  Google Scholar 

  20. Mase WE (1970) Continuum mechanics. McGraw-Hill, New York

    Google Scholar 

  21. Wilkinson AJ, Meaden G, Dingley DJ (2006) High resolution mapping of strains and rotations using electron backscatter diffraction. Mater Sci Technol 22:1271–1278

    Article  CAS  Google Scholar 

  22. Vaudin MD, Stan G, Gerbig YB, Cook RF (2011) High resolution surface morphology measurements using EBSD cross-correlation techniques and AFM. Ultramicroscopy 111:1206–1213

    Article  CAS  Google Scholar 

  23. Friedman LH, Vaudin MD, Stranick SJ, Stan G, Gerbig YB, Osborn WA, Cook RF (2016) Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si. Ultramicroscopy 163:75–86

    Article  CAS  Google Scholar 

  24. Takashige M, Hamazaki S-I, Shimizu F, Kojima S (1997) Observation of 90 domains in BaTiO3 by atomic force microscopy. Ferroelectrics 196:211–214

    Article  CAS  Google Scholar 

  25. Takashige M, Hamazaki S-I, Takahashi Y, Shimizu F, Yamaguchi T (1999) Temperature dependent surface images of BaTiO3 observed by atomic force microscopy. Jpn J Appl Phys 38:5686–5688

    Article  CAS  Google Scholar 

  26. Balakumar S, Xu JB, Ma JX, Ganesamoorthy S, Wilson IH (1997) Surface morphology of ferroelectric domains in BaTiO3 single crystals: an atomic force microscope study. Jpn J Appl Phys 36:5566–5569

    Article  CAS  Google Scholar 

  27. Kalinin SV, Bonnell DA (2000) Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy. J Appl Phys 87:3950–3957

    Article  CAS  Google Scholar 

  28. Nakahara H, Kaku S, Minakuchi T (2010) Observation of ferroelectric domains having atomically ordered surface in air by atomic force microscopy and piezoresponse force microscopy. Ferroelectrics 401:192–195

    Article  CAS  Google Scholar 

  29. Pramanick A, Jones JL, Tutncu G, Gjosh D, Stoica AD, An K (2012) Strain incompatibility and residual strains in ferroelectric single crystals. Sci Rep 2:929

    Article  CAS  Google Scholar 

  30. Tsai F, Cowley JM (1992) Observation of ferroelectric domain boundaries in BaTiO3 single crystals by reflection electron microscopy. Ultramicroscopy 45:43–53

    Article  CAS  Google Scholar 

  31. Yoneda Y, Mizuki J-I, Kohmura Y, Suzuki Y, Hamazaki S-I, Takashige M (2004) X-ray topography on domain-controlled BaTiO3 crystals. Jpn J Appl Phys 43:6821–6824

    Article  CAS  Google Scholar 

  32. Yoneda Y, Kohmura Y, Suzuki Y, Morimura R, Kojima A, Mizuki J-I (2007) Direct observation of non-strain-free style domain in BaTiO3 crystal by synchrotron X-ray topography. Trans Mater Res Soc Jpn 32:31–34

    CAS  Google Scholar 

  33. Potnis PR, Huber JE, Sutter JP, Hofmann F, Abbey B, Korsunsky (2010) Mapping of domain structure in barium titanate single crystals by synchrotron X-ray topography. In: Ounaies Z, Li J (ed) Behavior and mechanics of multifunctional materials and composites. Proc. SPIE 76440A-1-10

  34. El-Naggar MY, Boyd DA, Goodwin DG (2005) Characterization of highly-oriented ferroelectric PbxBa1−xTiO3 thin films grown by metalorganic chemical vapor deposition. J Mater Res 20:2969–2976

    Article  CAS  Google Scholar 

  35. Wang YG, Dec J, Kleemann W (1998) Study on surface and domain structures in PbTiO3 crystals by atomic force microscopy. J Appl Phys 84:6795–6799

    Article  CAS  Google Scholar 

  36. Shilo D, Ravichandran G, Bhattacharya K (2004) Investigation of twin-wall structure at the nanometer scale using atomic force microscopy. Nat Mat 3:453–457

    Article  CAS  Google Scholar 

  37. Park BM, Chung SJ, Kim HS, Si WM, Dudley M (1997) Synchrotron white-beam X-ray topography of ferroelectric domains in a BaTiO3 single crystal. Philos Mag A 75:611–620

    Article  CAS  Google Scholar 

  38. Tsai F, Khiznichenko V, Cowley JM (1992) High-resolution electron microscopy of 90 ferroelectric domain boundaries in BaTiO3 and Pb(Zr0.52Ti0.48)O3. Ultramicroscopy 45:55–63

    Article  CAS  Google Scholar 

  39. Ganpule CS, Nagarajan V, Hill BK, Roytburd AL, Williams ED, Ramesh R, Alpay SP, Roelofs Waser R, Eng LM (2002) Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films. J Appl Phys 91:1477–1481

    Article  CAS  Google Scholar 

  40. Farooq MU, Villaurrutia R, Maclaren I, Kungl H, Hoffmann MJ, Fundenberger J-J, Bouzy E (2008) Using EBSD and TEM-Kikuchi patterns to study local crystallography at the domain boundaries of lead zirconate titanate. J Microsc 230:445–454

    Article  CAS  Google Scholar 

  41. Farooq MU, Villaurrutia R, Maclaren I, Burnett TL, Comyn TP, Bell AJ, Kungl H, Hoffmann MJ (2008) Electron backscatter diffraction mapping of herringbone domain structures in tetragonal ferroelectrics. J Appl Phys 104:024111-1-8

    Article  Google Scholar 

  42. Ross FM, Kilaas R, Snoeck E, Hÿtch M, Thorel A, Normand L (1997) Quantitative analysis of displacements at 90° domain boundaries in BaTiO3 and PbTiO3. In: Smith DJ (ed) Materials research society symposium proceedings, vol 466, pp 245–252

  43. Holt M, Hassani Kh, Sutton M (2005) Microstructure of ferroelectric domains in BaTiO3 observed via X-ray microdiffraction. Phys Rev Lett 95:085504

    Article  CAS  Google Scholar 

  44. Yakunin SI, Shakmanov VV, Spivak GV, Vasil’eva NV (1972) Microstructure of domains and domain walls in single-crystal films of barium titanate. Sov Phys Sol State 14:310–313

    Google Scholar 

  45. Cao W, Cross LE (1991) Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys Rev B 44:5–12

    Article  CAS  Google Scholar 

  46. Zhang W, Bhattacharya K (2005) A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater 53:185–198

    Article  CAS  Google Scholar 

  47. Daniels JE, Jones JL, Finlayson TR (2006) Characterization of domain structures from diffraction profiles in tetragonal ferroelastic ceramics. J Phys D Appl Phys 39:5294–5299

    Article  CAS  Google Scholar 

  48. Pramanick A, Jones JL, Tutuncu G, Ghosh D, Stoica AD, An K (2012) Strain incompatibility and residual strains in ferroelectric single crystals. Sci Rep 2:929

    Article  CAS  Google Scholar 

  49. Read WT (1953) Dislocations in Crystals. McGraw-Hill Book Company Inc, New York

    Google Scholar 

  50. Igarashi M, Sato Y, Shibata N, Yamamoto T, Ikuhara Y (2006) HRTEM study of [001] low-angle tilt grain boundaries in fiber-texture BaTiO3 thin films. J Mater Sci 41:5146–5150. https://doi.org/10.1007/s10853-006-0447-3

    Article  CAS  Google Scholar 

  51. Fujimoto M (1985) The structure of a migrating low-angle tilt grain boundary in strontium titanate. J Mater Sci 20:3515–3523. https://doi.org/10.1007/BF01113757

    Article  CAS  Google Scholar 

  52. Takehara K, Sato Y, Tohei T, Shibata N, Ikuhara Y (2014) Titanium enrichment and strontium depletion near edge dislocation in strontium titanate [001]/(110) low-angle tilt grain boundary. J Mater Sci 49:3962–3969. https://doi.org/10.1007/s10853-014-8034-5

    Article  CAS  Google Scholar 

  53. Gao P, Ishikawa R, Feng B, Kumamoto A, Shibata N, Ikuhara Y (2018) Atomic-scale structure relaxation, chemistry and charge distribution of dislocation cores in SrTiO3. Ultramicroscopy 184:217–224

    Article  CAS  Google Scholar 

  54. Pertsev NA, Arlt G (1991) Dislocation method for calculation of internal stresses in polycrystalline ferroelectrics. Sov Phys – Sol State 33:1738-1744

  55. Imaeda M, Mizoguchi T, Sato Y, Lee H-S, Findlay SD, Shibata N, Yamamoto T, Ikuhara Y (2008) Atomic structure, electronic structure, and defect energies in [001](310)Σ5 grain boundaries in SrTiO3 and BaTiO3. Phys Rev B 78:245320-1-12

    Article  Google Scholar 

  56. Ivry Y, Chu DP, Durkan C (2010) Bundles of polytwins as meta-elastic domains in the thin polycrystalline simple multi-ferroic system PZT. Nanotechnology 21:065702-1-7

    Article  Google Scholar 

Download references

Acknowledgements

Certain commercial equipment, instruments and software are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the equipment or software identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Cook.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howell, J.A., Vaudin, M.D., Friedman, L.H. et al. Lamellar and bundled domain rotations in barium titanate. J Mater Sci 54, 116–129 (2019). https://doi.org/10.1007/s10853-018-2831-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2831-1

Keywords

Navigation