Skip to main content

Advertisement

Log in

The manifestation of oxygen contamination in ErD2 thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Erbium dihydride Er(H,D,T)2 is a fluorite structure rare-earth dihydride useful for the storage of hydrogen isotopes in the solid state. However, thermodynamic predictions indicate that erbium oxide formation will proceed readily during processing, which may detrimentally contaminate Er(H,D,T)2 films. In this work, transmission electron microscopy (TEM) techniques including energy-dispersive x-ray spectroscopy, energy-filtered TEM, selected area electron diffraction, and high-resolution TEM are used to examine the manifestation of oxygen contamination in ErD2 thin films. An oxide layer ∼30–130 nm thick was found on top of the underlying ErD2 film, and showed a cube-on-cube epitaxial orientation to the underlying ErD2. Electron diffraction confirmed the oxide layer to be Er2O3. While the majority of the film was observed to have the expected fluorite structure for ErD2, secondary diffraction spots suggested the possibility of either nanoscale oxide inclusions or hydrogen ordering. In situ heating experiments combined with electron diffraction ruled out the possibility of hydrogen ordering, so epitaxial oxide nanoinclusions within the ErD2 matrix are hypothesized. TEM techniques were applied to examine this oxide nanoinclusion hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher: Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydro-gen Enerev 32, 1121 (2007).

    Article  CAS  Google Scholar 

  2. F.E. Lynch: Metal hydride practical applications. J. Less-Common Met. 172–174, 943 (1991).

    Article  Google Scholar 

  3. G.W. Crabtree and M.S. Dresselhaus: The hydrogen fuel alternative. MRS Bull. 33, 421 (2008).

    Article  CAS  Google Scholar 

  4. W. Grochala and P.P. Edwards: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 104, 1283 (2004).

    Article  CAS  Google Scholar 

  5. P. Chen and M. Zhu: Recent progress in hydrogen storage. Mater. Today 11, 36 (2008).

    Article  Google Scholar 

  6. J.L. Provo: Effects of vacuum processing erbium dideuteride-ditritide films deposited on chromium underlays on copper substrates. J. Vac. Sci. Technol. 16, 230 (1979).

    Article  CAS  Google Scholar 

  7. P.A. Dow, G.W. Briers, M.A.P. Dewey, and D.S. Stark: Structure of erbium deuteride targets for neutron generators. Nucl. Instrum. Methods 60, 293 (1968).

    Article  CAS  Google Scholar 

  8. H.T. Bach, F.J. Steinkruger, W.S. Chamberlin, and C.R. Walthers: Quantitative analysis of deuterium and tritium in erbium hydride films of neutron tube targets. J. Vac. Sci. Technol., B 22. 1738 (2004).

    Article  CAS  Google Scholar 

  9. D.L. Chichester and J.D. Simpson: Compact accelerator neutron generators. Industr. Physicist 9, 22 (2003–2004).

    CAS  Google Scholar 

  10. I. Gabis, E. Evard, A. Voyt, I. Chernov, and Y. Zaika: Kinetics of decomposition of erbium hydride. J. Alloys Compd. 356, 353 (2003).

    Article  CAS  Google Scholar 

  11. E.J. Fernandez and D.M. Holloway: Oxidation studies of erbium hydride system. J. Vac. Sci. Technol. 11, 612 (1974).

    Article  CAS  Google Scholar 

  12. D.J. Mitchell and R.C. Patrick: Temperature dependence of helium release from erbium tritide films. J. Vac. Sci. Technol. 19, 236 (1981).

    Article  CAS  Google Scholar 

  13. C.R. Tewell and S.H. King: Observation of metastable erbium trihydride. Appl. Surf. Sci. 253, 2597 (2006).

    Article  CAS  Google Scholar 

  14. A.E. Curzon and H.G. Chlebek: Observation of face centered cubic erbium in thin-films and its oxidation. J. Less-Common Met. 27, 411 (1972).

    Article  CAS  Google Scholar 

  15. M.S. Rahman Khan: Epitaxial growth of erbium dihydride films. Thin Solid Films 113, 207 (1984).

    Article  Google Scholar 

  16. M.S. Rahman Khan and R.F. Miller: The growth and structure of epitaxial films of the rare-earth dihydrides. J. Phys. D: Appl. Phys. 12, 271 (1979).

    Article  Google Scholar 

  17. R.S. Blewer and J.K. Maurin: Dimensional expansion and surface microstructure in helium-implanted erbium and erbium-hydride films. J. Nucl. Mater. 44, 260 (1972).

    Article  CAS  Google Scholar 

  18. J.W. Guthrie, L.C. Beavis, D.R. Begeal, and W.G. Perkins: Properties of hydride-forming metals and of multilayer hydrogen permeation barriers. J. Nucl. Mater. 53, 313 (1974).

    Article  CAS  Google Scholar 

  19. E.D. Gu, H. Savaloni, M.A. Player, and G.V. Marr: Characterization of evaporated erbium films at various stages of growth. J. Phys. Chem. Solids 53, 127 (1992).

    Article  CAS  Google Scholar 

  20. M.S. Rahman Khan: Changes produced in the electrical resistivity of ErH2 thin films when converted to ErH3 due to hydrogen treatment. Appl. Phys. A 35, 263 (1984).

    Article  Google Scholar 

  21. J.A. Knapp and J.F. Browning: Nanoindentation characterization of ErT2 thin films. J. Nucl. Mater. 350, 147 (2006).

    Article  CAS  Google Scholar 

  22. C.S. Snow, L.N. Brewer, D.S. Gelles, M.A. Rodriguez, P.G. Kotula, M.A. Mangan, and J.F. Browning: Helium release and microstructural changes in Er(D,T)2–x3Hex films. J. Nucl. Mater. 374, 147 (2007).

    Article  CAS  Google Scholar 

  23. P. Vajda: Hydrogen ordering and metal-semiconductor transitions in superstoichiometric rare earth dihydrides. J. Alloys Compd. 231, 170 (1995).

    Article  CAS  Google Scholar 

  24. R.T. DeHoff: Thermodynamics in Materials Science (McGraw-Hill, New York, 1993).

    Google Scholar 

  25. D.M. Holloway: The quantitative determination of surface oxide thickness on deposited metal films by combination auger spectroscopy and inert gas ion bombardment. Appl. Spectrosc. 27, 95 (1973).

    Article  CAS  Google Scholar 

  26. D.F. Cowgill: Helium nano-bubble evolution in aging metal tritides. Fus. Sci. Technol. 48, 539 (2005).

    Article  CAS  Google Scholar 

  27. E. Fromm and H. Uchida: Effect of oxygen sorption layers on the kinetics of hydrogen absorption by tantalum at 77–700 K. J. Less-Common Met. 66, 77 (1979).

    Article  CAS  Google Scholar 

  28. H. Wenzl, K-H. Klatt, P. Meuffels, and K. Papathanassopoulos: Hydrogen storage in thin film metal hydrides. J. Less-Common Met. 89, 489 (1983).

    Article  CAS  Google Scholar 

  29. I.P. Jain, B. Devi, and A. Williamson: Hydrogen in UHV deposited FeTi thin films. Int. J. Hydrogen Energy 26, 1183 (2001).

    Article  CAS  Google Scholar 

  30. T. Venhaus and J. Poths: Observations on He-3 release from ErT2 films. Fus. Sci. Technol. 48, 601 (2005).

    Article  CAS  Google Scholar 

  31. R. Brydson: Electron Energy Loss Spectroscopy (Royal Microscopical Society Handbook #48) (BIOS Scientific Publishers, Oxford, 2001).

    Google Scholar 

  32. G. Kothleitner and F. Hofer: Optimization of the signal to noise ratio in EFTEM elemental maps with regard to different ioniza-tion edge types. Micron 29, 349 (1998).

    Article  CAS  Google Scholar 

  33. J. Mayer: Nanoscale analysis by energy-filtering TEM, in Advances in Imaging and Electron Physics, Vol. 123, edited by P.W. Hawkes (Academic Press, Amsterdam, 2002), p. 399.

    Article  CAS  Google Scholar 

  34. P.J. Thomas and P.A. Midgley: An introduction to energy-filtered transmission electron microscopy. Top. Catal. 21, 109 (2002).

    Article  CAS  Google Scholar 

  35. D.B. Williams and C.B. Carter: Transmission Electron Microscopy (Plenum, New York, 1996).

    Book  Google Scholar 

  36. I.P. Jain, Y.K. Vijay, L.K. Malhotra, and K.S. Uppadhyay: Hydrogen storage in thin-film metal hydride-A review. Int. J. Hydrogen Energy 13, 15 (1988).

    Article  CAS  Google Scholar 

  37. E.J. Grier, A.K. Petford-Long, and R.C.C. Ward: Determination of hydrogen ordering within the ss-RH2 + x phase (R = Ho, Y) using electron diffraction techniques. J. Appl. Crystallogr. 33, 1246 (2000).

    Article  CAS  Google Scholar 

  38. J.A. Goldstone, J. Eckert, P.M. Richards, and E.L. Venturini: Temperature and concentration-dependence of hydrogen site occupancy in several rare-earth dihydrides. Phys. B + C (Amsterdam) 136, 183 (1986).

    CAS  Google Scholar 

  39. P. Vajda, J.N. Daou, and J.P. Burger: Observations of magnetic and structural ordering in TbH2+x compounds through electrical-resistivity measurements. Phys. Rev. B 36, 8669 (1987).

    Article  CAS  Google Scholar 

  40. S.N. Sun, Y. Wang, and M.Y. Chou: First principles study of hydrogen ordering in b-YH2+x. Phys. Rev. B 49, 6481 (1994).

    Article  CAS  Google Scholar 

  41. T.J. Udovic, J.J. Rush, and I.S. Anderson: Neutron spectroscopic evidence of concentration-dependent hydrogen ordering in the octahedral sublattice of b-TbH2+x. Phys. Rev. B 50, 7144 (1994).

    Article  CAS  Google Scholar 

  42. P. Vajda and J.N. Daou: Magnetic and metal-semiconductor transitions in ordered and disordered ErH(D)(2+x). Phys. Rev. B 49, 3275 (1994).

    Article  CAS  Google Scholar 

  43. T.J. Udovic, J.J. Rush, and I.S. Anderson: Neutron spectroscopic comparison of b-phase rare-earth hydrides. J. Alloys Compd. 231, 138 (1995).

    Article  CAS  Google Scholar 

  44. I.G. Ratishvili and P. Vajda: Hydrogen ordering in superstoichiometric rare-earth hydrides for a system with an energy-constants ratio p = V2/V1 < 1: LaH2+x. Phys. Rev. B 53, 581 (1996).

    Article  CAS  Google Scholar 

  45. T.J. Udovic, Q. Huang, and J.J. Rush: Hydrogen and deuterium site separation in fcc-based mixed-isotope rare-earth hydrides. Phys. Rev. B 61, 6611 (2000).

    Article  CAS  Google Scholar 

  46. M. De Graef: Introduction to Conventional Transmission Electron Microscopy (Cambridge University Press, Cambridge, 2003).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad M. Parish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parish, C.M., Snow, C.S. & Brewer, L.N. The manifestation of oxygen contamination in ErD2 thin films. Journal of Materials Research 24, 1868–1879 (2009). https://doi.org/10.1557/jmr.2009.0217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0217

Navigation