Skip to main content
Log in

Effects of zinc, lithium, and indium on the grain size of magnesium

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The grain size of magnesium solid-solution alloys with lithium, indium, and/or zinc has been determined. Lithium, indium, and zinc additions decreased the grain size, D, of magnesium solid-solution alloys cast in a copper mold. The most effective grain refinement was obtained by zinc. In binary Mg-Zn alloys, grain size is related to the growth restriction factor, Q as D = 94 + 312/Q. In Mg-Li and Mg-In binary alloys, grain size versus growth relationships described as D = a + b/Q indicated that these alloys have lower numbers of nucleants but with higher potency than the Mg-Zn binary system. For Mg-Li and especially Mg-In, grain size could be related to growth restriction as D = 383Q-n with higher R2. Ternary and quaternary alloys based on Mg-Zn with Li and/or In additions also follow the D = a + b/Q relationship with the parameters indicating a larger number of lower potency nucleants than the Mg-Zn binary alloys. Electron probe microanalysis showed that Mg-Zn alloys exhibit pronounced and persistent grain-boundary enrichment of Zn, pointing toward Scheil solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Doege and K. Droder: Sheet metal forming of magnesium wrought alloys—Formability and process technology. J. Mater. Process. Technol. 115, 14 (2001).

    Article  CAS  Google Scholar 

  2. D.L. Albright, F. Bergeron, R. Neelameggham, A. Luo, H. Kaplan, and M.O. Pekguleryuz: Magnesium technology 2002. Part II. Wrought products, alloy processing, R and D strategies, corrosion, welding. JOM 54 (8), 22 (2002).

    Article  CAS  Google Scholar 

  3. S.R. Agnew: Wrought magnesium: A 21st century outlook. J. Metals (JOM-US) 56 (5), 202004.

    CAS  Google Scholar 

  4. C.J. Bettles and M.A. Gibson: Current wrought magnesium alloys: Strengths and weaknesses. JOM 57 (5), 46 (2005).

    Article  CAS  Google Scholar 

  5. T. Uesugi, M. Kohyama, M. Kohzu, and K. Higasi: Generalized stacking-fault energy and dislocation properties for various slip systems in magnesium: A first-principles study. Mater. Sci. Forum 419–422, 225 (2003).

    Article  Google Scholar 

  6. J. Koike: New deformation mechanisms in fine-grain Mg alloys. Mater. Sci. Forum 419–122. 189 (2003).

    Article  Google Scholar 

  7. R. Ohyama, J. Koike, T. Kobayashi, M. Suzuki, and K. Maruyama: Enhanced grain-boundary sliding at room temperature in AZ31 magnesium alloy. Mater. Sci. Forum 419–122. 237 (2003).

    Article  Google Scholar 

  8. E.F. Emley: Principles of Magnesium Technology (Pergamon Press, London, 1966).

    Google Scholar 

  9. T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa, and K. Higashi: Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading. Mater. Trans. 42 (7), 1177 (2001).

    Article  CAS  Google Scholar 

  10. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi: Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 45, 89 (2001).

    Article  CAS  Google Scholar 

  11. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52, 5093 (2004).

    Article  CAS  Google Scholar 

  12. X.L. Wang, Y. Yu, and E.D. Wang: The effects of grain size on ductility of AZ31 magnesium alloy. Mater. Sci. Forum 488–189, 535 (2005).

    Article  Google Scholar 

  13. M.A. Easton and D.H. StJohn: Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate. Mater. Sci. Eng., A 486, 8 (2008).

    Article  Google Scholar 

  14. T.E. Quested: Solidification of inoculated aluminum alloys. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2004.

    Google Scholar 

  15. T.E. Quested: Understanding mechanisms of grain refinement of aluminium alloys by inoculation. Mater. Sci. Technol. 20, 1357 (2004).

    Article  CAS  Google Scholar 

  16. D.H. StJohn, P. Cao, M. Qian, and M.A. Easton: A new analytical approach to reveal the mechanisms of grain refinement. Adv. Eng. Mater. 9 (9), 739 (2007).

    Article  CAS  Google Scholar 

  17. M.A. Easton and D.H. StJohn: An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metall. Mater. Trans. A 36, 1911 (2005).

    Article  Google Scholar 

  18. M.A. Easton and D.H. StJohn: A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles. Acta Mater. 49, 1867 (2001).

    Article  CAS  Google Scholar 

  19. Y.C. Lee, A.K. Dahle, and D.H. StJohn: The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A 31, 2895 (2000).

    Article  Google Scholar 

  20. A. Kearns and P.S. Cooper: Effects of solutes on grain refinement of selected wrought aluminum alloys. Mater. Sci. Technol. 13 (8), 650 (1997).

    Article  CAS  Google Scholar 

  21. T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  22. D.H. StJohn, M. Qian, M.A. Easton, P. Cao, and Z. Hildebrand: Grain refinement of magnesium alloys. Metall. Mater. Trans. A 36, 1669 (2005).

    Article  Google Scholar 

  23. M. Johnsson: Influence of zirconium on the grain refinement of aluminum. Z. Metallkd. 85, 781 (1994).

    CAS  Google Scholar 

  24. Smithells Metals Reference Book, 8th ed., edited by W.F. Gale and T.C. Totemeier (Elsevier Butterworth-Heinemann, Oxford, UK and Burlington, MA, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pekguleryuz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becerra, A., Pekguleryuz, M. Effects of zinc, lithium, and indium on the grain size of magnesium. Journal of Materials Research 24, 1722–1729 (2009). https://doi.org/10.1557/jmr.2009.0205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0205

Navigation