Skip to main content
Log in

Structural, optical, and electronic properties of room temperature ferromagnetic GaCuN film grown by hybrid physical-chemical vapor deposition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ferromagnetic Cu-doped GaN film was grown on a GaN-buffered sapphire (0001) substrate by a hybrid physical-chemical-vapor-deposition method (HPCVD). The GaCuN film (Cu: 3.6 at.%) has a highly c-axis-oriented hexagonal wurtzite crystal structure, which is similar to GaN buffer but without any secondary phases such as metallic Cu, CuxNy, and CuxGay compounds. Two weak near-band edge (NBE) emissions at 3.38 eV and donor-acceptor-pair (DAP) transition at 3.2 eV with a typical strong broad yellow emission were observed in photoluminescence spectra for GaN buffer. In contrast, the yellow emission was completely quenched in GaCuN film because Ga vacancies causing the observed yellow emission in undoped GaN were substituted by Cu atoms. In addition, GaCuN film exhibits a blue shift of NBE emission, which could be explained with the +2 oxidation state of Cu ions, replacing +3 Ga ions resulting in band gap increment. The valance sate of Cu in GaCuN film was also confirmed by x-ray photoelectron spectroscopy (XPS) analysis. The GaCuN film shows ferromagnetic ordering and possesses a residual magnetization of 0.12 emu/cm3 and a coercive field of 264 Oe at room temperature. The unpaired spins in Cu2+ ions (d9) are most likely to be responsible for the observed ferromagnetism in GaCuN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Das Sarma: Ferromagnetic semiconductors: A giant appears in spintronics. Nat. Mater. 2, 292 (2003).

    Article  Google Scholar 

  2. S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, and J.D. Budai: Advances in wide bandgap materials for semiconductor spintronics. Mater. Sci. Eng., R 40, 137 (2003).

    Article  Google Scholar 

  3. S.J. Pearton, D.P. Norton, R. Frazier, S.Y. Han, C.R. Abernathy, and J.M. Zavada: Spintronics device concepts. IEE Proc: Circuits Syst. Mag. 152, 312 (2005).

    Google Scholar 

  4. K. Yagami, A.A. Tulapurkar, A. Fukushima, and Y. Suzuki: Low-current spin-transfer switching and its thermal durability in a low-saturation-magnetization nanomagnet. Appl. Phys. Lett. 85, 5634 (2004).

    Article  CAS  Google Scholar 

  5. S. Zhang, P.M. Levy, and A. Fert: Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett. 88, 236601 (2002).

    Article  CAS  Google Scholar 

  6. K.C. Ku, S.J. Potashnik, R.F. Wang, S.H. Chun, P. Schiffer, N. Samarth, M.J. Seong, A. Mascarenhas, E. Johnston-Halperin, R.C. Myers, A.C. Gossard, and D.D. Awschalom: Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn] As epilayers. Appl. Phys. Lett. 82, 2302 (2003).

    Article  CAS  Google Scholar 

  7. K. Sato and H. Katayama-Yoshida: Material design of GaN-based ferromagnetic diluted magnetic semiconductors. Jpn. J. Appl. Phys. 40, L485 (2001).

    Article  CAS  Google Scholar 

  8. H. Asahi, Y.K. Zhou, M. Hashimoto, M.S. Kim, X.J. Li, S. Emura, and S. Hasegawa: GaN-based magnetic semiconductors for nanospintronics., J. Phys. Condens. Matter 16, S5555 (2004).

    Article  CAS  Google Scholar 

  9. K. Biswas, K. Sardar, and C.N.R. Rao: Ferromagnetism in Mn-doped GaN nanocrystals prepared solvothermally at low temperatures. Appl. Phys. Lett. 89, 132503 (2006).

    Article  Google Scholar 

  10. Y. Shon, S. Lee, H.C. Jeon, Y.S. Park, D.Y. Kim, T.W. Kang, J.S. Kim, E.K. Kim, D.J. Fu, X.J. Fan, Y.J. Park, J.M. Baik, and J.L. Lee: Origin of clear ferromagnetism for p-type GaN implanted with Fe[sup +] (5 and 10 at.%). Appl. Phys. Lett. 89, 082505 (2006).

    Article  Google Scholar 

  11. X.Y. Cui, J.E. Medvedeva, B. Delley, A.J. Freeman, N. Newman, and C. Stampfl: Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN. Phys. Rev. Lett. 95, 256404 (2005).

    Article  CAS  Google Scholar 

  12. S. Dhar, O. Brandt, A. Trampert, L. Daweritz, K.J. Friedland, K.H. Ploog, J. Keller, B. Beschoten, and G. Guntherodt: Origin of high-temperature ferromagnetism in (Ga,Mn)N layers grown on 4H–SiC(0001) by reactive molecular-beam epitaxy. Appl. Phys. Lett. 82, 2077 (2003).

    Article  CAS  Google Scholar 

  13. H. Przybylinska, A. Bonanni, A. Wolos, M. Kiecana, M. Sawicki, T. Dietl, H. Malissa, C. Simbrunner, M. Wegscheider, and H. Sitter: Magnetic properties of a new spintronic material–GaNFe. Mater. Sci. Eng., B 126, 222 (2006).

    Article  CAS  Google Scholar 

  14. J-H. Lee, I-H. Choi, S. Shin, S. Lee, J. Lee, C. Whang, S-C. Lee, K-R. Lee, J-H. Baek, K.H. Chae, and J. Song: Room-temperature ferromagnetism of Cu-implanted GaN. Appl. Phys. Lett. 90, 032504 (2007).

    Article  Google Scholar 

  15. R.Q. Wu, G.W. Peng, L. Liu, Y.P. Feng, Z.G. Huang, and Q.Y. Wu: Cu-doped GaN: A dilute magnetic semiconductor from first-principles study. Appl. Phys. Lett. 89, 062505 (2006).

    Article  Google Scholar 

  16. H.K. Seong, J.Y. Kim, J.J. Kim, S.C. Lee, S.R. Kim, U. Kim, T.E. Park, and H.J. Choi: Room-temperature ferromagnetism in Cu doped GaN nanowires. Nano Lett. 7, 3366 (2007).

    Article  CAS  Google Scholar 

  17. X. Zeng, A.V. Pogrebnyakov, A. Kotcharov, J.E. Jones, X.X. Xi, E.M. Lysczek, J.M. Redwing, S. Xu, Q. Li, J. Lettieri, D.G. Schlom, W. Tian, X. Pan, and Z-K. Liu: In situ epitaxial MgB2 thin films for superconducting electronics. Nat. Mater. 1, 35 (2002).

    Article  CAS  Google Scholar 

  18. D. Chakraborti, J. Narayan, and J.T. Prater: Room temperature ferromagnetism in Zn1-xCu xO thin films. Appl. Phys. Lett. 90, 062504 (2007).

    Article  Google Scholar 

  19. D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, and G.D. Tang: Magnetic properties of n-type Cu-doped ZnO thin films. Appl. Phys. Lett. 90, 142502 (2007).

    Article  Google Scholar 

  20. M.K. Puchert, A. Hartmann, R.N. Lamb, and J.W. Martin: Highly resistive sputtered ZnO films implanted with copper. J. Mater. Res. 11, 2463 (1996).

    Article  CAS  Google Scholar 

  21. C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, and J.R. Rumble Jr: X-ray Photoelectron Spectroscopy Database (Version 3.5) [National Institute of Standard and Technology (NIST) Online Databases, August 27, 2007].

    Google Scholar 

  22. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben: Handbook of X-ray Photoelectron Spectroscopy, ed. J. Chastain (Physical Electronics Inc., 1992).

  23. C-R. Cho, J-Y. Hwang, J-P. Kim, S-Y. Jeong, M-S. Jang, W-J. Lee, and D-H. Kim: Ferromagnetism of heteroepitaxial Zn1-xCuxO films grown on n-GaN substrates. Jpn. J. Appl. Phys. 43, L1383 (2004).

    Article  CAS  Google Scholar 

  24. K. Fleischer, M. Toth, M.R. Phillips, J. Zou, G. Li, and S.J. Chua: Depth profiling of GaN by cathodoluminescence microanalysis. Appl. Phys. Lett. 74, 1114 (1999).

    Article  CAS  Google Scholar 

  25. O. Gelhausen, E. Malguth, M.R. Phillips, E.M. Goldys, M. Strassburg, A. Hoffmann, T. Graf, M. Gjukic, and M. Stutzmann: Doping-level-dependent optical properties of GaNMn. Appl. Phys. Lett. 84, 4514 (2004).

    Article  CAS  Google Scholar 

  26. B. Clerjaud, C. Naud, B. Deveaud, B. Lambert, B. Plot, G. Bremond, C. Benjeddou, G. Guillot, and A. Nouailhat: The acceptor level of vanadium in III–V compounds. J. Appl. Phys. 58, 4207 (1985).

    Article  CAS  Google Scholar 

  27. H. Amano, K. Hiramatsu, and I. Akasaki: Heteroepitaxial growth and the effect of strain on the luminescent properties of GaN films on (11–20) and (0001) sapphire substrates. Jpn. J. Appl. Phys., Part 2 2, L1384 (1988).

    Article  Google Scholar 

  28. T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, L. Wang, M. Tanemura, and J.S. Chen: Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Appl. Phys. Lett. 90, 032509 (2007).

    Article  Google Scholar 

  29. M. Herbich, A. Twardowski, D. Scalbert, and A. Petrou: Bound magnetic polaron in Cr-based diluted magnetic semiconductors. Phys. Rev. B: Condens. Matter 58, 7024 (1998).

    Article  CAS  Google Scholar 

  30. A. Kaminski and S. Das Sarma: Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Hwan Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, C.H., Kim, S.H., Lee, H.J. et al. Structural, optical, and electronic properties of room temperature ferromagnetic GaCuN film grown by hybrid physical-chemical vapor deposition. Journal of Materials Research 24, 1716–1721 (2009). https://doi.org/10.1557/jmr.2009.0204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0204

Navigation