Skip to main content
Log in

Hole-mediated ferromagnetism in GaN doped with Cu and Mn

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We present a cathodoluminescence (CL) and superconducting quantum interference device (SQUID) magnetometry study of the generation of ferromagnetism (FM) in GaN doped with non-magnetic (copper) and magnetic (manganese) impurities. Our results suggest that p–d hybridization between Cu and N ions promotes FM in GaN:Cu, and that an exchange interaction between the Cu2+ (d9) orbitals and the t2g anti-bonding orbitals of Mn2+ ions generates FM in GaN:Cu and GaN:Mn. Besides that, the exchange interaction is mediated by holes, created by the acceptor nature of the impurities Cu2+ and Mn2+, and of the point-defects-type gallium vacancies (VGa) present in samples. For this study, we synthesized undoped GaN, GaN:Cu, and GaN:Mn samples by thermal evaporation onto Ni0.8Cr0.2/Si substrates in a horizontal furnace operated at low vacuum. Energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) measurements confirmed that the obtained samples consisted of GaN without residual oxide phases. XPS measurements also revealed the coexistence of Cu+ and Cu2+ ions in the GaN:Cu sample, and Mn2+ in the GaN:Mn sample. CL spectra from Cu and Mn-doped GaN samples showed that doping generates a relative intensity enhancement of two bands centered at 2.60 and 3.00 eV, associated with the formation of VGa in GaN. Magnetization–applied field (MH) curves of the GaN, GaN:Cu, and GaN:Mn samples revealed a FM behavior at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019–1022 (2000)

    CAS  Google Scholar 

  2. H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. Chang, L. Esaki, Phys. Rev. Lett. 63, 1849–1852 (1989)

    CAS  Google Scholar 

  3. H. Ohno, Science 281, 951–956 (1998)

    CAS  Google Scholar 

  4. J. Hwang, M. Kobayashi, G. Song, A. Fujimori, A. Tanaka, Z. Yang, H. Lin, D. Huang, C. Chen, H. Jeon, T. Kang, Appl. Phys. Lett. 91, 072507-1-3 (2007)

    Google Scholar 

  5. D. Han, P. Jeunghee, R. Won, K. Soonkyu, C. Joonyeon, Appl. Phys. Lett. 86, 032506-1-3 (2005)

    Google Scholar 

  6. D. Chen, Z. Ding, S. Yao, W. Hua, K. Wang, T. Chen, Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2797–2800 (2008)

    CAS  Google Scholar 

  7. D. Leite, A. Pereira, W. Iwamoto, P. Pagliuso, P. Lisboa-Filho, J. da Silva, Solid State Sci. 17, 97–101 (2013)

    CAS  Google Scholar 

  8. P. Ganz, G. Fischer, C. Sürgers, D. Schaadt, Phys. Rev. B 85, 165204-1-8 (2012)

    Google Scholar 

  9. K. Jeganathan, V. Purushothaman, R. Debnath, S. Arumugam, AIP Adv. 4, 057116-1-6 (2014)

    Google Scholar 

  10. H. Ren, J. Jian, C. Chen, D. Pan, A. Ablat, Y. Sun, J. Li, R. Wu, Appl. Phys. A 116, 185–191 (2014)

    CAS  Google Scholar 

  11. M.H.F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A.R. Raju, C. Rout, Phys. Rev. Lett. 94, 187204-1-4 (2005)

    Google Scholar 

  12. J.J. Liu, K. Wang, M.H. Yu, W.L. Zhou, J. Appl. Phys. 102, 024301-1-6 (2007)

    Google Scholar 

  13. X.G. Xu, H.L. Yang, Y. Wu, D.L. Zhang, S.Z. Wu, J. Miao, Y. Jiang, X.B. Qin, X.Z. Cao, B.Y. Wang, Appl. Phys. Lett. 97, 232502-1-3 (2010)

    Google Scholar 

  14. H.W. Peng, H.J. Xiang, S.H. Wei, S.S. Li, J.B. Xia, J.B. Li, Phys. Rev. Lett. 102, 017201-1-4 (2009)

    Google Scholar 

  15. G. Guzman, E. Escudero, R. Silva, M. Herrera, J. Appl. Phys. 123, 161578-1-10 (2018)

    Google Scholar 

  16. G. Thaler, R. Frazier, B. Gila, J. Stapleton, M. Davidson, C.R. Abernathy, S.J. Pearton, C. Segre, Appl. Phys. Lett. 84, 1314-1-4 (2004)

    Google Scholar 

  17. C. Xu, J. Chun, H.J. Lee, Y.H. Jeon, S.E. Han, J.J. Kim, D.E. Kim, J. Phys. Chem. C 111, 1180–1185 (2007)

    CAS  Google Scholar 

  18. X.G. Cui, Z.K. Tao, R. Zhang, X. Li, X.Q. Xiu, Z.L. Xie, S.L. Gu, P. Han, Y. Shi, Y.D. Zheng, Appl. Phys. Lett. 92, 152116 (2008)

    Google Scholar 

  19. V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, Y. Shreter, Jpn J. Appl. Phys. 52, 08JE14-1-4 (2013)

    Google Scholar 

  20. M. Herrera, A. Cremades, J. Piqueras, M. Stutzmann, O. Ambacher, J. Appl. Phys. 95, 5305-1-7 (2004)

    Google Scholar 

  21. H.D. Li, M. Tsukihara, Y. Naoi, Y.B. Lee, S. Sakai, Appl. Phys. Lett. 84, 1886-1-4 (2004)

    Google Scholar 

  22. Z. Liliental-Weber, Y. Chen, S. Ruvimov, J. Washburn, Phys Rev Lett 79, 2835-1-4 (1997)

    Google Scholar 

  23. L. Qin, C. Xue, Y. Duan, L. Shi, Physica B 404, 190–193 (2009)

    CAS  Google Scholar 

  24. F. Shi, H. Li, C. Xue, J. Mater. Sci. Mater. Electron. 21, 1249–1254 (2010)

    CAS  Google Scholar 

  25. V. Thakur, S.M. Shivaprasad, Appl. Surf. Sci. 327, 389–393 (2015)

    CAS  Google Scholar 

  26. S. Poulston, P.M. Parlett, P. Stone, M. Bowker, Surf. Interfaces Anal. 24, 811–820 (1996)

    CAS  Google Scholar 

  27. F.L. Meng, H.X. Zhong, Q. Zhang, K.H. Liu, J.M. Yan, Q. Juang, J. Mater. Chem. A 5, 18972–18976 (2017)

    CAS  Google Scholar 

  28. R.P. Vazquez, Surf. Sci. Spectra 5, 262–266 (1998)

    Google Scholar 

  29. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.C. St Smart, Appl. Surf. Sci. 257, 887–898 (2010)

    CAS  Google Scholar 

  30. M.C. Biesinger, Surf. Interface Anal. 49, 1325–1334 (2017)

    CAS  Google Scholar 

  31. C. Bozdog, K.H. Chow, G.D. Watkins, H. Sunakawa, N. Kuroda, A. Usui, Phys. Rev. B 62, 12932–12926 (2000)

    Google Scholar 

  32. J.H. Lee, I.H. Choi, S. Shin, S. Lee, J. Lee, C. Whang, S.C. Lee, K.R. Lee, J.H. Chae, J. Song, Appl. Phys. Lett. 90, 35504-1-3 (2007)

    Google Scholar 

  33. H.W. Nesbitt, D. Banerjee, Am. Mineral. 83, 305–315 (1998)

    CAS  Google Scholar 

  34. J.L. Lyons, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 97, 152108-1-4 (2010)

    Google Scholar 

  35. M. Herrera, P. Fernandez, J. Piqueras, Semicond. Sci. Technol. 13, 900–905 (1998)

    Google Scholar 

  36. J. Neugebauer, C.G. Van de Walle, Appl. Phys. Lett. 69, 503–505 (1996)

    Google Scholar 

  37. J.L. Lyons, C.G. Van de Walle, NPJ Comput. Mater. 12, 1–10 (2017)

    Google Scholar 

  38. H. Coelho-Júnior, R.L. Maltez, Opt. Mater. 101, 109727-1-6 (2020)

    Google Scholar 

  39. M.A. Reshchikov, H. Morkoc, S.S. Park, K.Y. Lee, Appl. Phys. Lett. 78, 3041–3043 (2001)

    CAS  Google Scholar 

  40. M.A. Reshchikov, H. Morkoc, J. Appl. Phys. 97, 061301-1-95 (2005)

    Google Scholar 

  41. S.J. Xu, G. Li, S.J. Chua, X.C. Wang, W. Wang, Appl. Phys. Lett. 72, 2451–2453 (1998)

    CAS  Google Scholar 

  42. L. Macht, J.L. Weyher, A. Grzegorczyk, P.K. Larsen, Phys. Rev. B 71, 073309-1-4 (2005)

    Google Scholar 

  43. J. Elsner, R. Jones, M.I. Heggie, P.K. Sitch, M. Haugk, T. Frauenheim, S. Öberg, P.R. Briddon, Phys. Rev. B 58, 12571 (1998)

    CAS  Google Scholar 

  44. M. Herrera-Zaldivar, P. Fernandez, J. Piqueras, J. Appl. Phys. 83, 2796 (1998)

    Google Scholar 

  45. T.B. Wei, P. Ma, R.F. Duan, J.X. Wang, J.M. Li, Zh Liu, Y.P. Zeng, Mater. Lett. 61, 3882–3885 (2007)

    CAS  Google Scholar 

  46. X. Cui, J. Zhang, Opt. Mater. 46, 299–303 (2015)

    CAS  Google Scholar 

  47. R.Q. Wu, G.W. Peng, L. Liu, Y.P. Feng, Z.G. Huang, Q.Y. Wu, Appl. Phys. Lett. 89, 62505-1-3 (2006)

    Google Scholar 

  48. H.K. Seong, J.Y. Kim, J.J. Kim, S.C. Lee, S.R. Kim, U. Kim, T.E. Park, H.J. Choi, Nano Lett. 7, 3366–3371 (2007)

    CAS  Google Scholar 

  49. H.J. Xiang, S.H. Wei, Nano Lett. 8, 1825–1829 (2008)

    CAS  Google Scholar 

  50. H. Hori, S. Sonoda, T. Sasaki, Y. Yamamoto, S. Shimizu, K. Suga, K. Kindo, Physica B 324, 142–150 (2002)

    CAS  Google Scholar 

  51. S. Sonoda, I. Tanaka, H. Ikeno, T. Yamamoto, F. Oba, T. Araki, Y. Yamamoto, K. Suga, Y. Nanishi, Y. Akasaka, K. Kindo, H. Hori, Physica B 18, 4615–4621 (2006)

    CAS  Google Scholar 

  52. A.M. Yakunin, AYu Silov, P.M. Koenraad, W. Van Roy, J. De Boeck, J.H. Wolter, AIP Conf. Proc. 696, 650–655 (2003)

    Google Scholar 

  53. J. Schneider, U. Kaufmann, W. Wilkening, M. Bauumler, F. Köhl, Phys. Rev. Lett. 59, 240–243 (1987)

    CAS  Google Scholar 

  54. T. Graf, S.T.B. Goennenwein, M.S. Brandt, Phys. Status Solidi (b) 239, 277–290 (2003)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from Conacyt (No. 284667), and a Grant from PAPIIT-UNAM (No. IN101917). The technical support of E. Aparicio and Dr. Roberto Escudero is greatly appreciated. M. I. Perez Montfort corrected the English version of the manuscript. DM acknowledges the financial support by MINECO/FEDER/M-ERA.Net Projects RTI2018-097195-B-I00 and M-ERA-PCIN-2017-106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Herrera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán, G., Maestre, D. & Herrera, M. Hole-mediated ferromagnetism in GaN doped with Cu and Mn. J Mater Sci: Mater Electron 31, 15070–15078 (2020). https://doi.org/10.1007/s10854-020-04070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04070-7

Navigation