Skip to main content
Log in

Stress behavior of electroplated Sn films during thermal cycling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical behavior of electroplated Sn thin films was investigated using thermal-expansion induced strain. For stress above a threshold value, the stress relaxation observed during the thermal cycles is well-described by a power law creep mechanism with exponents similar to those of the bulk material. However, the stress relaxation showed significant thickness dependence so that the relaxation in thicker films is faster than thinner films. The surface oxide was also shown to have a considerable effect on retarding the relaxation by inhibiting diffusion to the surface. The relevance of the stress relaxation to whisker formation in Sn-based coatings is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Vandervelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne: Thermal cycling reliability of SnAgCu and SnPb solder joints: A comparison for several IC-packages. Microelectron. Reliab. 47, 259 (2007).

    Article  Google Scholar 

  2. J. Liang, S. Downes, N. Dariavach, D. Shangguan, and S.M. Heinrich: Effects of load and thermal conditions on Pb-free solder joint reliability. J. Electron. Mater. 33, 1507 (2004).

    Article  CAS  Google Scholar 

  3. M. Abtew and G. Selvaduray: Lead-free solders in microelectronics. Mater. Sci. Eng., R 27, 95 (2000).

    Article  Google Scholar 

  4. K.N. Tu: Interdiffusion and reaction in bimetallic Cu-Sn thin films. Acta Metall. 21, 347 (1973).

    Article  CAS  Google Scholar 

  5. K.N. Tu: Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions. Phys. Rev. B 49, 2030 (1994).

    Article  CAS  Google Scholar 

  6. B.Z. Lee and D.N. Lee: Spontaneous growth mechanism of tin whiskers. Acta Mater. 46, 3701 (1998).

    Article  CAS  Google Scholar 

  7. D. Weiss, H. Gao, and E. Arzt: Constrained diffusional creep in UHV-produced copper thin films. Acta Mater. 49, 2395 (2001).

    Article  CAS  Google Scholar 

  8. R-M. Keller, S.P. Baker, and E. Arzt: Stress-temperature behavior of unpassivated thin copper films. Acta Mater. 47, 415 (1999).

    Article  CAS  Google Scholar 

  9. R-M. Keller, S.P. Baker, and E. Arzt: Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation. J. Mater. Res. 13, 1307 (1998).

    Article  CAS  Google Scholar 

  10. M.D. Thouless, J. Gupta, and J.M.E. Harper: Stress development and relaxation in copper films during thermal cycling. J. Mater. Res. 8, 1845 (1993).

    Article  CAS  Google Scholar 

  11. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  12. P.A. Flinn, D.S. Gardner, and W.D. Nix: Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history. IEEE Trans. Electron. Dev. 34, 689 (1987).

    Article  Google Scholar 

  13. E. Chason and B.W. Sheldon: Monitoring stress in thin films during processing. Surf. Eng. 19, 287 (2003).

    Article  Google Scholar 

  14. L.B. Freund and S. Suresh: Thin Film Materials (Cambridge University Press, Cambridge, UK, 2003), p. 90.

    Google Scholar 

  15. J.G. Lee, A. Telang, K.N. Subramanian, and T.R. Bieler: Modeling thermomechanical fatigue behavior of Sn-Ag solder joints. J. Electron. Mater. 31, 1152 (2002).

    Article  CAS  Google Scholar 

  16. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps (Pergamon Press, Elmsford, NY, 1982), pp. 6–16.

    Google Scholar 

  17. Metals Handbook: Properties and Selection: Non-Ferrous Alloys and Special Purpose Materials, 10th ed., Vol. 2 (ASM, Metals Park, OH, 1990), pp. 517–526.

  18. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty: Creep deformation characteristics of tin and tin-based electronic solder alloys. Metall. Mater. Trans. A 36, 99 (2005).

    Article  Google Scholar 

  19. X.Q. Shi, Z.P. Wang, Q.J. Yang, and H.L.J. Pang: Creep behavior and deformation mechanism map of Sn-Pb eutectic solder alloy. ASME J. Eng. Mater. Technol. 125, 81 (2003).

    Article  CAS  Google Scholar 

  20. R.J. McCabe and M.E. Fine: Creep of tin, Sb-solution-strengthened tin, and SbSn-precipitate-strengthened tin. Metall. Mater. Trans. A 33, 1531 (2002).

    Article  Google Scholar 

  21. J. Weertman and J.E. Breen: Creep of tin single crystals. J. Appl. Phys. 27, 1189 (1956).

    Article  CAS  Google Scholar 

  22. T. Chen and I. Dutta: Effect of Ag and Cu concentrations on the creep behavior of Sn-based solers. J. Electron. Mater. 37, 347 (2008).

    Article  Google Scholar 

  23. C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, R. Mahajan, and S.G. Jadhav: A comparison of impression and compression creep behavior of polycrystalline Sn. J. Mater. Sci. 42, 5182 (2007).

    Article  CAS  Google Scholar 

  24. Z. Guo, Y-H. Pao, and H. Conrad: Plastic deformation kinetics of 95.5Sn4Cu0.5Ag solder joints. J. Electron. Packag. 117, 100 (1995).

    Article  Google Scholar 

  25. W.H. Bang, K.H. Oh, J.P. Jung, J.W. Morris, Jr., and F. Hua: The correlation between stress relaxation and steady-state creep of eutectic Sn-Pb. J. Electron. Mater. 34, 1287 (2005).

    Article  CAS  Google Scholar 

  26. Y. Choi and S. Suresh: Size effects on the mechanical properties of thin polycrystalline metal films on substrates. Acta Mater. 50, 1881 (2002).

    Article  CAS  Google Scholar 

  27. J.W. Shin and E. Chason: (submitted).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Wook Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, J.W., Chason, E. Stress behavior of electroplated Sn films during thermal cycling. Journal of Materials Research 24, 1522–1528 (2009). https://doi.org/10.1557/jmr.2009.0172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0172

Navigation