Skip to main content
Log in

Predicting macroscopic plastic flow of high-performance, dual-phase steel through spherical nanoindentation on each microphase

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An attempt was made to predict the macroscopic plastic flow of a high-performance pipeline steel, consisting of dual constituent phases (soft ferrite and hard bainite), by performing nanoindentation experiments on each microphase with two spherical indenters that have different radii (550 nm and 3.3 μm). The procedure is based on the well known concepts of indentation stress-strain and constraint factor, which make it possible to relate indentation hardness to the plastic flow of the phases. Additional consideration of the indentation size effect for sphere and application of a simple “rule-of-mixture” led us to a reasonably successful estimation of the macroscopic plastic flow of the steel from the microphases properties, which was verified by comparing the predicted stress-strain curve with that directly measured from the conventional tensile test of a bulky sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Sanderson, R.K. Ohm, and M. Jacobs: Study of X100 linepipe costs point to potential saving. Oil Gas J. 97, 54 (1999).

    Google Scholar 

  2. A. Glover, J. Zhou, D. Horsley, N. Suzuki, S. Endo, and J. Takehara: Design, application and installation of an X100 pipeline, in Proceeding of OMAE 2003 (22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003), Art. No. OMAE2003–37429.

    Google Scholar 

  3. N. Ishikawa, M. Okatsu, S. Endo, and J. Kondo: Design concept and production of high deformability linepipe, in Proceeding of IPC 2006 (6th International Pipeline Conference, Calgary, Canada, 2006), Art. No. IPC2006–10240.

    Google Scholar 

  4. N. Ishikawa, S. Endo, and J. Kondo: High performance UOE linepipes. JFE Technical Report 7, 20 (2006).

    Google Scholar 

  5. D-H. Seo, C-M. Kim, J-Y. Yoo, and K-B. Kang: Microstructure and mechanical properties of X80/X100 grade plate and pipes, in Proceeding of ISOPE 2007 (7th International Offshore and Polar Engineering Conference, Lisbon, Portugal, 2007), p. 3301.

    Google Scholar 

  6. N. Suzuki and M. Toyoda: Critical compressive strain of linepipes related to workhardening parameters, in Proceeding of OMAE 2002 (21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, 2002), Art. No. OMAE2003–28253.

    Google Scholar 

  7. N. Suzuki, R. Muraoka, A. Glover, J. Zhou, and M. Toyoda: Local buckling behavior of X100 linepipes, in Proceeding of OMAE 2003 (22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003), Art. No. OMAE2003–37145.

    Google Scholar 

  8. S. Endo and M. Nagae: Ferrite-martensite dual phase anti-erosion steel. ISIJ Int. 36, 95 (1996).

    Article  CAS  Google Scholar 

  9. T. Hüper, S. Endo, N. Ishikawa, and K. Osawa: Effect of volume fraction of constituent phase on the stress-strain relationship of dual phase steels. ISIJ Int. 39, 288 (1999).

    Article  Google Scholar 

  10. Y. Tomota and I. Tamura: Mechanical behavior of steels consisting of two ductile phases. Trans. ISIJ 22, 665 (1982).

    Article  Google Scholar 

  11. Y. Tomota, M. Umemoto, N. Komatsubara, A. Hiramatsu, N. Nakajima, A. Moriya, T. Watanabe, S. Nanba, G. Anan, K. Kunishige, Y. Higo, and M. Miyahara: Prediction of mechanical properties of multi-phase steels based on stress-strain curve. ISIJ Int. 32, 343 (1992).

    Article  CAS  Google Scholar 

  12. Rudiono and Y. Tomota: Application of the secant method to prediction of flow curves in multi-microstructure steels. Acta Mater. 45, 1923 (1997).

    Article  CAS  Google Scholar 

  13. P.J. Jacques, J. Ladriere, and F. Delannay: On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induce plasticity multiphase steels. Metall. Mater. Trans. A 32, 2759 (2001).

    Article  Google Scholar 

  14. P.J. Jacques, Q. Furnémont, F. Lani, T. Pardoen, and F. Delannay: Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Mater. 55, 3681 (2007).

    Article  CAS  Google Scholar 

  15. F. Lani, Q. Furnémont, T. Van Rompaey, F. Delannay, P.J. Jacques, and T. Pardoen: Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modeling. Acta Mater. 55, 3695 (2007).

    Article  CAS  Google Scholar 

  16. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  18. Y-T. Cheng and C-M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).

    Article  Google Scholar 

  19. N.X. Randall, C. Julia-Schmutz, J.M. Soro, J. von Stebut, and G. Zacharie: Novel nanoindentation method for characterising multiphase materials. Thin Solid Films 308–309, 297 (1997).

    Article  Google Scholar 

  20. M. Göken and M. Kempf: Microstructural properties of superalloys investigated by nanoindentations in an atomic force microscope. Acta Mater. 47, 1043 (1999).

    Article  Google Scholar 

  21. Y. Choi, W.Y. Choo, and D. Kwon: Analysis of mechanical property distribution in multiphase ultra-fine-grained steels by nanoindentation. Scr. Mater. 45, 1401 (2001).

    Article  CAS  Google Scholar 

  22. Q. Furnémont, M. Kempf, P.J. Jacques, M. Göken, and F. Delannay: On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels. Mater. Sci. Eng., A 328, 26 (2002).

    Article  Google Scholar 

  23. G.B. Viswanathan, E. Lee, D.M. Maher, S. Banerjee, and H.L. Fraser: Direct observation and analyses of dislocation substructures in the α phase of an α/β Ti-alloy formed by nanoindentation. Acta Mater. 53, 5101 (2005).

    Article  CAS  Google Scholar 

  24. M. Delincé, P.J. Jacques, and T. Pardoen: Separation of size-dependent strengthening contribution in fine-grained Dual Phase steels by nanoindentation. Acta Mater. 54, 3395 (2006).

    Article  CAS  Google Scholar 

  25. D. Tabor: Hardness of Metals (Clarendon Press, Oxford, UK, 1951).

    Google Scholar 

  26. K.L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  27. J.S. Field and M.V. Swain: A simple predictive model for spherical indentation., J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  28. J.G. Swadener, B. Taljat, and G.M. Pharr: Measurement of residual stress by load and depth-sensing indentation with spherical indenters. J. Mater. Res. 16, 2091 (2001).

    Article  CAS  Google Scholar 

  29. A.G. Atkins and D. Tabor: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149 (1965).

    Article  Google Scholar 

  30. Y.V. Milman, B.A. Galanov, and S.I. Chugunova: Plasticity characteristic obtained through hardness measurement. Acta Metall. Mater. 41, 2523 (1993).

    Article  CAS  Google Scholar 

  31. S. Jayaraman, G.T. Hahn, W.C. Oliver, C.A. Rubin, and P.C. Bastias: Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests. Int. J. Solids Struct. 35, 365 (1998).

    Article  Google Scholar 

  32. S. Shim, J-I. Jang, and G.M. Pharr: Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite element simulation. Acta Mater. 56, 3823 (2008).

    Article  CAS  Google Scholar 

  33. H. Hertz: Miscellaneous Papers, edited by D.E. Jones and G.H. Schott (Macmillan, London, 1896).

  34. E.G. Herbert, W.C. Oliver, and G.M. Pharr: On the measurement of yield strength by spherical indentation. Philos. Mag. 86, 5521 (2006).

    Article  CAS  Google Scholar 

  35. J-I. Jang, Y. Choi, J-S. Lee, Y-H. Lee, D. Kwon, M. Gao, and R. Kania: Application of instrumented indentation technique for enhanced fitness-for-service assessment of pipeline crack. Int. J. Fract. 131, 15 (2005).

    Article  Google Scholar 

  36. Y.P. Cao and J. Lu: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023 (2004).

    Article  CAS  Google Scholar 

  37. A. Sreeranganathan, A. Gokhale, and S. Tamirisakandala: Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation. Scr. Mater. 58, 114 (2008).

    Article  CAS  Google Scholar 

  38. J.G. Swadener, E.P. George, and G.M. Pharr: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681 (2002).

    Article  Google Scholar 

  39. Y.Y. Lim and M.M. Chaudhri: The effect of the indenter load on the nanohardness of ductile metals: An experimental study on polycrystalline work-hardened and annealed oxygen-free copper. Philos. Mag. 79, 2979 (1999).

    Article  CAS  Google Scholar 

  40. I.J. Spary, A.J. Bushby, and N.M. Jennett: On the indentation size effect in spherical indentation. Philos. Mag. 86, 5581 (2006).

    Article  CAS  Google Scholar 

  41. K. Durst, M. Göken, and G.M. Pharr: Indentation size effect in spherical and pyramidal indentations. J. Phys. D: Appl. Phys. 41, 074005 (2008).

    Article  CAS  Google Scholar 

  42. K.L. Johnson: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  43. T.T. Zhu, A.J. Bushby, and D.J. Dunstan: Size effect in the initiation of plasticity for ceramics in nanoindentation. J. Mech. Phys. Solids 56, 1170 (2008).

    Article  CAS  Google Scholar 

  44. T.T. Zhu, X.D. Hou, A.J. Bushby, and DJ. Dunstan: Indentation size effect at the initiation of plasticity for ceramics and metals. J. Phys. D: Appl. Phys. 41, 074004 (2008).

    Article  CAS  Google Scholar 

  45. H.W. Swift: Plastic instability under physics of solids. J. Mech. Phys. Solids 1, 1 (1952).

    Article  Google Scholar 

  46. J.H. Hollomon: Tensile deformation. Trans. AIME 162, 268 (1945).

    Google Scholar 

  47. Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim: Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels. ISIJ Int. 42, 1571 (2002).

    Article  CAS  Google Scholar 

  48. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: Relationship between yield ratio and the material constant of the swift equation. Met. Mater. Int. 12, 131 (2006).

    Article  Google Scholar 

  49. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  50. J-I. Jang, S. Shim, S. Komazaki, and T. Honda: A nanoindentation study on grain-boundary contributions to strengthening and aging degradation mechanisms in advanced 12 Cr ferritic steel. J. Mater. Res. 22, 175 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeil Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, BW., Seo, DH., Yoo, JY. et al. Predicting macroscopic plastic flow of high-performance, dual-phase steel through spherical nanoindentation on each microphase. Journal of Materials Research 24, 816–822 (2009). https://doi.org/10.1557/jmr.2009.0109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0109

Navigation