Skip to main content
Log in

A quantitative analysis for the stress field around an elastoplastic indentation/contact

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In our previous paper [Feng et al., Acta Mater. 55, 2929 (2007)], an analytical model is proposed to estimate the stress field around an elastoplastic indentation/contact, matching nicely with the finite element analysis. The model is related to an embedded center of dilatation (ECD) in a half-space. In this paper, we focus on determining the ECD strength B* and the ECD depth ξ. By matching an expanding cavity model and the ECD model, we find that B* ≈ Yc3/6 and ξ ≈ 0.4c, where Y is the yield strength and c is the plastic zone radius. We provide a method to predict Y, c, and thereby B* as well as ξ through nanoindentation data, and we also demonstrate that pileup is the physical reason for the existence of the upper limit for the ratio of hardness to Y. Thus, our ECD model is completed by combining our previous paper (the analytical expression) and this paper (the essential parameters).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Tangand and A.H.W. Ngan: Nanoindentation measurement of mechanical properties of soft solid covered by a thin liquid film. Soft Materials 5, 169 (2007).

    Article  Google Scholar 

  2. G. Feng and A.H.W. Ngan: Creep and strain burst in indium and aluminium during nanoindentation. Scr. Mater. 45, 971 (2001).

    Article  CAS  Google Scholar 

  3. G. Feng and W.D. Nix: Indentation size effect in MgO. Scr. Mater. 51, 599 (2004).

    Article  CAS  Google Scholar 

  4. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, New York, 1987).

    Google Scholar 

  5. A.K. Bhattacharya and W.D. Nix: Finite-element simulation of indentation experiments. Int. J. Solids Struct. 24, 881 (1988).

    Article  Google Scholar 

  6. A.C. Fischer Cripps: Elastic-plastic behaviour in materials loaded with a spherical indenter. J. Mater. Sci. 32, 727 (1997).

    Article  CAS  Google Scholar 

  7. S.S. Chiang, D.B. Marshall, and A.G. Evans: The response of solids to elastic plastic indentation. 1. Stresses and residual-stresses. J. Appl. Phys. 53, 298 (1982).

    Article  CAS  Google Scholar 

  8. S. Biwa and B. Storakers: An analysis of fully plastic Brinell indentation. J. Mech. Phys. Solids 43, 1303 (1995).

    Article  Google Scholar 

  9. B. Storakers, S. Biwa, and P.L. Larsson: Similarity analysis of inelastic contact. Int. J. Solids Struct. 34, 3061 (1997).

    Article  Google Scholar 

  10. B. Storakers and P.L. Larsson: On Brinell and Boussinesq indentation of creeping solids. J. Mech. Phys. Solids 42, 307 (1994).

    Article  Google Scholar 

  11. E.H. Yoffe: Elastic stress-fields caused by indenting brittle materials. Philos. Mag. A 46, 617 (1982).

    Article  CAS  Google Scholar 

  12. G. Feng, S. Qu, Y. Huang, and W.D. Nix: An analytical expression for the stress field around an elastoplastic indentation/contact. Acta Mater. 55, 2929 (2007).

    Article  CAS  Google Scholar 

  13. B. Noble and D.A. Spence: Formulation of Two-Dimensional and Axisymmetric Problems for an Elastic Half-Space (Mathematics Research Center, University of Wisconsin, Madison, WI, 1971).

    Google Scholar 

  14. R. Hill: The Mathematical Theory of Plasticity (Clarendon Press, Oxford, UK, 1983).

    Google Scholar 

  15. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford, UK, 1951).

    Google Scholar 

  16. F.J. Lockett: Indentation of rigid/plastic material by conical indenter. J. Mech. Phys. Solids 11, 345 (1963).

    Article  Google Scholar 

  17. T.O. Mulhearn: Deformation of metals by Vickers-type pyramidal indenters. J. Mech. Phys. Solids 7, 85 (1959).

    Article  Google Scholar 

  18. L.E. Samuels and T.O. Mulhearn: An experimental investigation of the deformed zone associated with indentation hardness impressions. J. Mech. Phys. Solids 5, 125 (1957).

    Article  Google Scholar 

  19. A.E.H. Love: A Treatise on the Mathematical Theory of Elasticity, 4th ed. (Cambridge University Press, Cambridge, 1927).

    Google Scholar 

  20. R.F. Cook and G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).

    Article  CAS  Google Scholar 

  21. D.J. Morris and R.F. Cook: Radial fracture during indentation by acute probes: I, Description by an indentation wedging model. Int. J. Fract. 136, 237 (2005).

    Article  Google Scholar 

  22. X.N. Jing, S. Maiti, and G. Subhash: A new analytical model for estimation of scratch-induced damage in brittle solids. J. Am. Cerarti. Soc. 90, 885 (2007).

    Article  CAS  Google Scholar 

  23. D. Tabor: Indentation hardness and its measurements: Some cautionary comments, in Microindentation Techniques in Materials Science and Engineering: A Symposium Sponsored by ASTM Committee E-4 on Metallography and by the International Metallographic Society, 15–18 July 1984 (International Metallographic Society, Philadelphia, PA, 1986), p. 129.

    Google Scholar 

  24. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  25. R.D. Mindlin and D.H. Cheng: Thermoelastic stress in semi-infinite solid. J. Appl. Phys. 21, 931 (1950).

    Article  Google Scholar 

  26. D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, and W.W. Gerberich: Yield strength predictions from the plastic zone around nanocontacts. Acta Mater. 47, 333 (1998).

    Article  Google Scholar 

  27. G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  28. A.K. Ghosal and S.K. Biswas: Examination of stress-fields in elastic plastic indentation. Philos. Mag. B 67, 371 (1993).

    Article  CAS  Google Scholar 

  29. M.S. Bobji and S.K. Biswas: Determination and study of the strength of the blister field generated by conical indentation. Philos. Mag. A 73, 399 (1996).

    Article  CAS  Google Scholar 

  30. A. Mukhopadhyay and S.K. Biswas: Indentation of sintered alumina clay composite—An experimental discussion of a combined Boussinesq and blister stress-field approach. Philos. Mag. Lett. 64, 77 (1991).

    Article  CAS  Google Scholar 

  31. W.P. Yu and J.P. Blanchard: An elastic-plastic indentation model and its solutions. J. Mater. Res. 11, 2358 (1996).

    Article  CAS  Google Scholar 

  32. Y.T. Cheng and C.M. Cheng: Scaling relationships in conical indentation of elastic perfectly plastic solids. Int. J. Solids Struct. 36, 1231 (1999).

    Article  Google Scholar 

  33. I.N. Sneddon: Fourier Transforms (McGraw-Hill Book Co., New York, 1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, G., Qu, S., Huang, Y. et al. A quantitative analysis for the stress field around an elastoplastic indentation/contact. Journal of Materials Research 24, 704–718 (2009). https://doi.org/10.1557/jmr.2009.0097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0097

Navigation