Skip to main content
Log in

Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Based on the classical wetting theories, two theoretically predicted formulas of the apparent contact angles on square-pillar-array microstructured surfaces for Wenzel mode and Cassie mode have been derived, respectively. The theories of superhydrophobic stability on microstructured surfaces have been summarized. Four square-pillar-array samples were fabricated on titanium substrates by using the femtosecond laser micromachining technology, and wettability was analyzed by both experimental and analytical methods. The results showed that the titanium-based surfaces are superhydrophobic. The maximal apparent contact angle is up to 156.9°, while the corresponding sliding angle is 4.7°. Testing of the superhydrophobic stability of the surfaces showed that the maximal deviation of the apparent contact angles is only 0.6°. Analyses indicate that the stable superhydrophobicity of the supplied titanium-based surfaces is within a certain range and not perfect. To improve that, a practical controllable method is proposed herein for the design of a stable superhydrophobic surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I.
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto T. Watanabe: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16(13), 5754 2000

    Article  CAS  Google Scholar 

  2. Z-G. Guo W-M. Liu: Progress in biomimicing of super-hydrophobic surface. Prog. Chem. 18(6), 721 2006 (in Chinese)

    Google Scholar 

  3. G-T. Gu H-X. Dang: Development of super-hydrophobic transparent thin films. J. Henan Univ. (Nat. Sci.) 34(4), 22 2004 (in Chinese)

    Google Scholar 

  4. A. Nakajima, K. Hashimoto T. Watanabe: Recent studies on super-hydrophobic film. Monatsh. Chem. 132, 31 2001

    Article  CAS  Google Scholar 

  5. S. Shibuichi, T. Yamamoto, T. Onda K. Tsujii: Super water- and oil-repellent surfaces resulting from fractal structure. J. Colloid Interface Sci. 208(1), 287 1998

    Article  Google Scholar 

  6. G-L. Cui, W. Xu, X-H. Zhou, X-W. Xiao, L. Jiang D-B. Zhu: Rose-like superhydrophobic surface based on conducting dmit salt. Colloids Surf., A 272(1–2), 63 2006

    Article  CAS  Google Scholar 

  7. E. Bormashenko, T. Stein, G. Whyman, Y. Bormashenko R. Pogreb: Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir 22, 9982 2006

    Article  CAS  Google Scholar 

  8. M.E. Abdelsalam, P.N. Bartlett, T. Kelf J. Baumberg: Wetting of regularly structured gold surfaces. Langmuir 21, 1753 2005

    Article  CAS  Google Scholar 

  9. C-H. Wang, Y-Y. Song, J-W. Zhao X-H. Xia: Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction. Surf. Sci. 600(4), L38 2006

    Article  CAS  Google Scholar 

  10. E. Bormashenko, Y. Bormashenko, G. Whyman, R. Pogreb O. Stanevsky: Micrometrically scaled textured metallic hydrophobic interfaces validate the Cassie–Baxter wetting hypothesis. J. Colloid Interface Sci. 302, 308 2006

    Article  CAS  Google Scholar 

  11. N. Zhao, F. Shi, Z-Q. Wang X. Zhang: Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir 21, 4713 2005

    Article  CAS  Google Scholar 

  12. S-T. Wang, L. Feng L. Jiang: One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv. Mater. 18(6), 767 2006

    Article  CAS  Google Scholar 

  13. Z. Chen X-G. Geng: Micro/nano-structure and mechanism of anti-sticky thin film on copper substrate. Mater. Protect. 38(7), 1 2005 (in Chinese)

    Google Scholar 

  14. N.J. Shirtcliffe, G. McHale, M.I. Newton C.C. Perry: Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir 21, 937 2005

    Article  CAS  Google Scholar 

  15. J.T. Han, Y. Jang, D.Y. Lee, J.H. Park, S-H. Song, D-Y. Ban K. Cho: Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development. J. Mater. Chem. 15, 3089 2005

    Article  CAS  Google Scholar 

  16. L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong S.F. Yu: Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. B 109, 7746 2005

    Article  CAS  Google Scholar 

  17. S. Kitazawa, Y. Choi S. Yamamoto: In situ optical spectroscopy of PLD of nano-structured TiO2. Vacuum 74, 637 2004

    Article  CAS  Google Scholar 

  18. E. György, A. Pérez del Pino, P. Serra J.L. Morenza: Influence of the ambient gas in laser structuring of the titanium surface. Surf. Coat. Technol. 187, 245 2004

    Article  CAS  Google Scholar 

  19. E. György, A. Pérez del Pino, P. Serra J.L. Morenza: Growth of surface structures on through pulsed Nd:YAG laser irradiation in vacuum. Appl. Surf. Sci. 197–198, 851 2002

    Article  Google Scholar 

  20. N. Koshizaki, A. Narazaki T. Sasaki: Preparation of nanocrystalline titania films by pulsed laser deposition at room temperature. Appl. Surf. Sci. 197-198, 624 2002

    Google Scholar 

  21. Y-S. Tian, C-Z. Chen, D-Y. Wang T-Q. Lei: Research progress of laser surface treatment on titanium alloys. Metal Heat Treat. 30(8), 29 2005 (in Chinese)

    Google Scholar 

  22. V. Henč-Bartolić, Z. Andreić, D. Gracin, H.J. Kunze M. Stubičar: Nitrogen laser beam interaction with titanium surface. Fiziki, A 4(2), 449 1995

    Google Scholar 

  23. M.S.F. Lima, F. Folio S. Mischler: Microstructure and surface properties of laser-remelted titanium nitride coatings on titanium. Surf. Coat. Technol. 199, 83 2005

    Article  CAS  Google Scholar 

  24. M. Tsukamotoa, K. Asukab, H. Nakano, M. Hashida, M. Katto, N. Abe M. Fujita: Periodic microstructures produced by femtosecond laser irradiation on titanium plate. Vacuum 80, 1346 2006

    Article  CAS  Google Scholar 

  25. A.Y. Vorobyev C-L. Guo: Femtosecond laser structuring of titanium implants. Appl. Surf. Sci. 253, 7272 2007

    Article  CAS  Google Scholar 

  26. R-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe K. Hashimoto: Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105(10), 1984 2001

    Article  CAS  Google Scholar 

  27. Q-J. Liu, X-H. Wu, Q. Liu Y-H. He: Study on photocatalytic and hydrophilic properties of TiO2/Fe2O3 composite thin film. J. Funct. Mater. 34(2), 225 2003 (in Chinese)

    Google Scholar 

  28. Q-J. Liu, X-H. Wu Q. Liu: Effect of heat-treated temperature on photocatalytic and hydrophilic properties of TiO2 thin film. J. Funct. Mater. 34(2), 189 2003 (in Chinese)

    Google Scholar 

  29. Y-C. Yang, Z-S. Guan, W-H. Feng, Z-Y. Ye, Z-X. Si, T-L. Song L. Jiang: Study on wettability of sol-gel TiO2 film ablated by laser. Acta Chim. Sinica 60(10), 1773 2002 (in Chinese)

    Google Scholar 

  30. R.N. Wenzel: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988 1936

    Article  Google Scholar 

  31. R.N. Wenzel: Surface roughness and contact angle (letter). J. Phys. Colloid Chem. 53, 1466 1949

    Article  CAS  Google Scholar 

  32. A.B.D. Cassie S. Baxter: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546 1944

    Article  CAS  Google Scholar 

  33. A.B.D. Cassie: Contact angles. Discuss. Faraday Soc. 3, 11 1948

    Article  Google Scholar 

  34. P.G. de Gennes, F. Brochard-Wyart D. Quéré: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves Springer New York 2004 219–221

    Book  Google Scholar 

  35. N.A. Patankar: On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19, 1249 2003

    Article  CAS  Google Scholar 

  36. B. He, N.A. Patankar J. Lee: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19, 4999 2003

    Article  CAS  Google Scholar 

  37. L-J. Zheng, X-D. Wu, Z. Lou D. Wu: Superhydrophobic surfaces fabricated by microstructuring on surfaces. Chin. Sci. Bull. 49(17), 1691 2004 (in Chinese)

    Google Scholar 

  38. L. Zhu, Y-Y. Feng, X-Y. Ye Z-Y. Zhou: Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures. Sens. Actuators, A 130–131, 595 2006

    Article  CAS  Google Scholar 

  39. A. Marmur: Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir 19, 8343 2003

    Article  CAS  Google Scholar 

  40. W. Li A. Amirfazli: A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. J. Colloid Surf. Sci. 292, 195 2005

    Article  CAS  Google Scholar 

  41. A. Lafuma D. Quéré: Superhydrophobic states. Nat. Mater. 2, 457 2003

    Article  CAS  Google Scholar 

  42. N.A. Patankar: Transition between superhydrophobic states on rough surfaces. Langmuir 20, 7097 2004

    Article  CAS  Google Scholar 

  43. B. Liu F.F. Lange: Pressure induced transition between superhydrophobic states: Configuration diagrams and effect of surface feature size. J. Colloid Interface Sci. 298, 899 2006

    Article  CAS  Google Scholar 

  44. Q-S. Zheng, Y. Yu Z-H. Zhao: Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21, 12207 2005

    Article  CAS  Google Scholar 

  45. B. Bhushan, M. Nosonovsky Y.C. Jung: Towards optimization of patterned superhydrophobic surfaces. J. R. Soc. Interface 4, 643 2007

    Article  CAS  Google Scholar 

  46. M. Nosonovsky B. Bhushan: Hierarchical roughness makes superhydrophobic states stable. Microelectron. Eng. 84, 382 2007

    Article  CAS  Google Scholar 

  47. M. Nosonovsky: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157 2007

    Article  CAS  Google Scholar 

  48. E. Bormashenko, R. Pogreb, G. Whyman M. Erlich: Cassie–Wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic Cassie–Wenzel wetting transition a 2D or 1D affair? Langmuir 23, 6501 2007

    Article  CAS  Google Scholar 

  49. E. Bormashenko, R. Pogreb, G. Whyman M. Erlich: Resonance Cassie–Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Langmuir 23, 12217 2007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Key Program, Grant No. 50435030) and the National High Technology Research and Development Program of China (“863” Program, Grant No. 2006AA04Z307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Zhou, M., Yuan, R. et al. Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability. Journal of Materials Research 23, 2491–2499 (2008). https://doi.org/10.1557/jmr.2008.0307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0307

Navigation