Skip to main content
Log in

Low-temperature sintering of PNW–PMN–PZT piezoelectric ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

For low-temperature firing of Pb0.94Sr0.06(Ni1/2W1/2)0.02(Mn1/3Nb2/3)0.07(Zr0.51Ti0.49)0.91O3 (PNW–PMN–PZT) system, BiFeO3 is selected as the sintering agent. In this study, the effects of BiFeO3 addition and sintering temperature on the microstructures and piezoelectric properties of the ceramics were investigated in detail. The ceramic with 10 mol% BiFeO3 sintered at 950 °C possesses optimal microstructure and piezoelectric properties. However, with the increase of sintering temperature the lower relative density, abnormal grain growth, and secondary phase accumulated at grain boundaries are observed, which deteriorates the piezoelectric properties. For the ceramics with different BiFeO3 addition sintered at 950 °C, the densification process and the grain growth are improved by suitable BiFeO3, while the morphotropic phase boundary (MPB) moving to the Ti-rich direction and the shrinkage of crystal cell occur. However, extra BiFeO3 inhabits the grain growth and introduces more cavities into the materials. Because of the microstructural changes that accompany the addition of BiFeO3 and the resulting decrease in sintering temperature, the maximum values of the piezoelectric properties are attained. By doping with 10 mol% BiFeO3, the sintering temperature of the PNW–PMN–PZT system can be lowered successfully from 1200 to 950 °C, while the excellent electric properties are kept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. Z.Y. Duan Q.K. Wang: Development of a novel high precision piezoelectric linear stepper actuator. Sens. Actuators, A 285, 118 2005

    Google Scholar 

  2. J.H. Hu H.L.W. Chan: A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode. Sens. Actuators, A 79, 88 2001

    Google Scholar 

  3. N.Y. Wong, Y. Zhang, C. Helen, L. Wah C.L. Choy: A bilayer piezoelectric transformer operating in a bending vibration mode. Mater. Sci. Eng., B 164, 99 2003

    Google Scholar 

  4. A. Schonecker, H.J. Gesemann L. Seffner Low-sintering PZT-ceramics for advanced actuators. Ferroelectrics, (ISAF1996, Proc. IEEE Int. Symp., 1, 1996), p. 263.

    Google Scholar 

  5. E. Ringgaard, E.R. Nielsen W.W. Wolny: Optimisation of new liquid-phase sintering aid for PZT. Applications of Ferroelectrics, (ISAF2000, Proc. IEEE Int. Symp., 1,2000), p. 451.

    Google Scholar 

  6. D.L. Corker, R.W. Whatmore, E. Ringgaard W.W. Wolny: Liquid-phase Sintering of PZT ceramics. J. Eur. Ceram. Soc. 2039, 20 2000

    Google Scholar 

  7. J. Yoo, Y. Lee K. Yoon: Microstructure, electrical properties and temperature stability of resonant frequency in Pb(Ni1/2W1/2) O3–Pb(Mn1/3Nb2/3)O3–Pb(Zr0.51Ti0.49)O3 ceramics for high-power piezoelectric transformer. Jpn. J. Appl. Phys. 3256, 40 2001

    Google Scholar 

  8. J. Yoo, K. Yoon, S. Hwang, S. Suh, J. Kim C. Yoo: Electrical characteristics of high power piezoelectric transformer for 28 W fluorescent lamp. Sens. Actuators, A 90, 132 2001

    Article  CAS  Google Scholar 

  9. L. Hwang, J.Y. Yoo, E.S. Jang, D. Oh, Y. Jeong, I. Ahn M. Cho: Fabrication and characteristics of PDA LCD backlight driving circuits using piezoelectric transformer. Sens. Actuators, A 115, 73 2004

    Article  CAS  Google Scholar 

  10. K. Yao, X.J. He, Y. Xu M.M. Chen: Screen-printed piezoelectric ceramic thick films with sintering additives introduced through a liquid-phase approach. Sens. Actuators, A 342, 118 2005

    Google Scholar 

  11. D. Saha, A. Sen H.S. Maiti: Low temperature liquid phase sintering of lead magnesium niobate. Ceram. Int. 145, 25 1999

    Google Scholar 

  12. E.R. Nielsen, E. Ringgaard M. Kosec: Liquid-phase sintering of Pb(Zr,Ti)O3 using PbO–WO3 additive. J. Eur. Ceram. Soc. 1847, 22 2002

    Google Scholar 

  13. S. Kaneko, D. Dong E. Murakami: Effect of simultaneous addition of BiFeO3 and Ba(Cu0.5W0.5)O3 on lowering of sintering temperature of Pb(Zr,Ti)O3 ceramics. J. Am. Ceram. Soc. 1013, 81 1998

    Google Scholar 

  14. K. Murakami, D. Mabuchi, T. Kurita, Y. Niwa S. Kaneko: Effects of adding various metal oxides on low-temperature sintered Pb(Zr,Ti)O3 ceramics. Jpn. J. Appl. Phys. 5188, 35 1996

    Google Scholar 

  15. S.Y. Chu C.S. Hsieh: Doping effects on the piezoelectric properties of low-temperature sintered PNN–PZT based ceramics. J. Mater. Sci. Lett. 609, 19 2000

    Google Scholar 

  16. S.Y. Chu C.H. Chen: Effects of dopants on the piezoelectric and dielectric properties of Sm-modified PbTiO3 ceramics. J. Mater. Res. B 2317, 35 2000

    Google Scholar 

  17. K. Murakami, Y. Niwal T. Kurita: Low-temperature sintering of Nb2O5-added Pb(Zr,Ti)O3 ceramics. Applications of Ferroelectrics, (ISAF1998, Proc. IEEE Int. Symp., 11,1998), p. 555.

    Google Scholar 

  18. P.W. Lu, W.R. Xue W. Huebner: A study of the sintering mechanism of PZT-based piezoceramics. Applications of Ferroelectrics, (ISAF1995, Proc. IEEE Int. Symp. 9,1994), p. 122.

    Google Scholar 

  19. S. Kaneko, K. Murakami, D. Mabuchi, T. Kurita Y. Niwa: Effects of the additions of various metal oxides on the low temperature sintering and the electrical properties of Pb(Zr,Ti)O3 ceramics. Ferroelectrics, (ISAF1996, Proc. IEEE Int. Symp. Appl., 2,1996) p. 727

    CAS  Google Scholar 

  20. H. Yamamoto, H. Funakubo, K. Shinozaki N. Mizutani: Grain boundary structure of Bi2O3-diffused BaTiO3 BL capacitor. J. Ceram. Soc. Jpn. 1266, 100 1992

    Google Scholar 

  21. B.D. Fabes W.H. Poisl: Processing of glass-ceramics from lunar resources. Space Manufacturing 8—Energy and Materials from Space, (Proc. 10th Princeton/AIAA/SSI Conf. 27 1991), p. 352

    Google Scholar 

  22. L.J. Zhou, A. Zimmermann Y.P. Zeng: Effects of PbO content on the sintering behavior, microstructure, and properties of La-doped PZST antiferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 145, 15 2004

    Google Scholar 

  23. X.X. Wang, K. Murakami, O. Sugiyama S. Kaneko: Piezoelectric properties, densification behavior and microstructural evolution of low temperature sintered PZT ceramics with sintering aids. J. Eur. Ceram. Soc. 1367, 21 2001

    Google Scholar 

  24. C.H. Wang: The microstructure and characteristics of 0.875PZT–0.125PMN ceramics with addition of Pb-based flux. J. Eur. Ceram. Soc. 2033, 22 2002

    Google Scholar 

  25. T. Hayashi, T. Inoue Y. Akiyama: Low temperature sintering of PZT powders coated with Pb5Ge3O11 by sol-gel method. J. Eur. Ceram. Soc. 999, 19 1999

    Google Scholar 

  26. K. Murakami, N. Okada D. Dong: Behavior of morphotropic phase boundary and microstructure of low-temperature sintered PZT ceramics with BiFeO3 and Ba(Cu,W)O3. Jpn. J. Appl. Phys. 5529, 33 1994

    Google Scholar 

  27. J.R. Cheng L.E. Cross: Modified BiFeO3-PbTiO3 morphotropic phase boundary (MPB) piezoelectric ceramics for high temperature and high-power applications in Materials and Devices for Smart Systems, edited by Y. Furuya, E. Quandt, Q. Zhang, K. Inoue, and M. Shahinpoor (Mater. Res. Soc., Symp. Proc. 785, Warrendale, PA (2004), D4.2, p. 87

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengxian Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Zhu, M., Xu, D. et al. Low-temperature sintering of PNW–PMN–PZT piezoelectric ceramics. Journal of Materials Research 22, 2410–2415 (2007). https://doi.org/10.1557/jmr.2007.0322

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0322

Navigation