Skip to main content
Log in

Quantitative evaluation of adhesion of metallic coatings with an extended microbridge test

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An extended microbridge test (eMBT) was proposed to assess the adhesion of metallic coatings on metallic substrates. Through loading on the backside of narrow striped freestanding coatings, a two-dimensional stable interfacial delamination was introduced. A cross-sectional scanning electron microscope (SEM) was used to examine the interfacial fracture process. A large deflection solution for elastic deformation of the coating was derived, and an approximate model was established for the estimate of interfacial crack extension force G. The eMBT samples of electroplated Ni coatings on C45 carbon steel substrate were tested, and the measured interfacial fracture toughness was about 5.28 J/m2. Cross-sectional SEM examination showed that the interface crack extended along the interface plane, and therefore the interfacial fracture proceeded by the debonding of Ni/steel interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
TABLE I.
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. P.R. Chalker, S.J. Bull D.S. Rickerby: A review of the methods for the evaluation of coating-substrate adhesion. Mater. Sci. Eng., A 140, 583 1991

    Article  Google Scholar 

  2. D.B. Marshall A.G. Evans: Measurement of adherence of residually stressed thin films by indentation. 1. Mechanics of interface delamination. J. Appl. Phys. 56, 2632 1984

    Article  CAS  Google Scholar 

  3. A.G. Evans J.W. Hutchinson: On the mechanics of delamination and spalling in compressed films. Int. J. Solids Struct. 20, 455 1984

    Article  Google Scholar 

  4. M.D. Drory J.W. Hutchinson: Diamond coating of titanium alloys. Science 263, 1753 1994

    Article  CAS  Google Scholar 

  5. J.J. Vlassak, M.D. Drory W.D. Nix: A simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titanium. J. Mater. Res. 12, 1900 1997

    Article  CAS  Google Scholar 

  6. J.M. Sanchez, S. El-Mansy, B. Sun, T. Scherban, N. Fang, D. Pantuso, W. Ford, M.R. Elizalde, J.M. Martinez-Esnaola, A. Martin-Meizoso, J. Gil-Sevillano, M. Fuentes J. Maiz: Cross-sectional nanoindentation: A new technique for thin film interfacial adhesion characterization. Acta Mater. 47, 4405 1999

    Article  CAS  Google Scholar 

  7. X.J. Zheng Y.C. Zhou: Investigation of an anisotropic plate model to evaluate the interface adhesion of thin film with cross-sectional nanoindentation method. Comp. Sci. Technol. 65, 1382 2005

    Article  CAS  Google Scholar 

  8. M.P. de Boer, M. Kriese W.W. Gerberich: Investigation of a new fracture mechanics specimen for thin film adhesion measurement. J. Mater. Res. 12, 2673 1997

    Article  Google Scholar 

  9. M.P. de Boer, J.C. Nelson W.W. Gerberich: Thin film scratch testing in two dimensions—experiments and analysis. J. Mater. Res. 13, 1002 1998

    Article  Google Scholar 

  10. A. Bagchi, G.E. Lucas, Z. Suo A.G. Evans: A new procedure for measuring the decohesion energy for thin ductile films on substrates. J. Mater. Res. 9, 1734 1994

    Article  CAS  Google Scholar 

  11. M.D. Kriese, W.W. Gerberich N.R. Moody: Quantitative adhesion measures of multilayer films: Part 1. Indentation mechanics. J. Mater. Res. 14, 3007 1999

    Article  CAS  Google Scholar 

  12. M.D. Kriese, W.W. Gerberich N.R. Moody: Quantitative adhesion measures of multilayer films: Part 2. Indentation of W/Cu, W/W, Cr/W. J. Mater. Res. 14, 3019 1999

    Article  CAS  Google Scholar 

  13. A. Bagchi A.G. Evans: Measurement of debond energy for thin metallization lines on dielectrics. Thin Solid Films 286, 203 1996

    Article  CAS  Google Scholar 

  14. J.W. Hutchinson Z. Suo: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 1992

    Article  Google Scholar 

  15. M.G. Allen S.D. Senturia: Analysis of critical debonding pressures of stressed thin films in the blister test. J. Adhesion 25, 303 1988

    Article  CAS  Google Scholar 

  16. M.G. Allen S.D. Senturia: Application of the island blister test for thin film adhesion measurement. J. Adhesion 29, 219 1989

    Article  CAS  Google Scholar 

  17. H.M. Jensen: The blister test for interface toughness measurement. Eng. Fract. Mech. 40, 475 1991

    Article  Google Scholar 

  18. H.M. Jensen M.D. Thouless: Effects of residual stresses in the blister test. Int. J. Solids Struct. 30, 779 1993

    Article  Google Scholar 

  19. T.Y. Zhang, Y.J. Su, C.F. Qian, M.H. Zhao L.Q. Chen: Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Mater. 48, 2843 2000

    Article  CAS  Google Scholar 

  20. Y.J. Su, C.F. Qian, M.H. Zhao T.Y. Zhang: Microbridge testing of silicon oxide/silicon nitride bilayer films deposited on silicon wafers. Acta Mater. 48, 4901 2000

    Article  CAS  Google Scholar 

  21. X.H. Liu, Z. Suo Q. Ma: Split singularities: Stress field near the edge of a silicon die on a polymer substrate. Acta Mater. 47, 67 1998

    Article  Google Scholar 

  22. M.Y. He, A.G. Evans J.W. Hutchinson: Convergent debonding of films and fibers. Acta Mater. 45, 3481 1997

    Article  CAS  Google Scholar 

  23. A.A. Volinsky, N.R. Moody W.W. Gerberich: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50, 441 2002

    Article  CAS  Google Scholar 

  24. B. Cotterell Z. Chen: The blister test—transition from plate to membrane behavior for an elastic material. Int. J. Fract. 86, 191 1997

    Article  Google Scholar 

  25. A.G. Evans, J.W. Hutchinson Y. Wei: Interface adhesion: effects of plasticity and segregation. Acta Mater. 47, 4093 1999

    Article  CAS  Google Scholar 

  26. F. Gaudette, S. Suresh, A.G. Evans, G. Dehm M. Ruhle: The influence of chromium addition on the toughness of γ-Ni/α-Al2O3 interfaces. Acta Mater. 45, 3503 1997

    Article  CAS  Google Scholar 

  27. S. Timoshenko S. Woinowski-Krieger Theory of Plates and Shells, (McGraw-Hill, New York, London, 1959

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Key Project of Chinese National Program for Fundamental Research and Development (Grant No. 2004CB619302), and the Key Project of National Natural Science Foundation of China (Grant No. 50531060) for their financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewei Xu.

Appendices

Appendix A: Large Deflection Solution of a Thin Plate

The schematic of the two-dimensional loading condition of the rectangular thin plate for the eMBT test is shown in Fig. A1.

FIG. A1
figure FA1

Schematic illustrations of a two-dimensional loading condition of the rectangular thin plate model for the eMBT test. Qz denotes the transversal shearing force at the central line in the plate.

The boundary condition of the left part of the plate is given by

(A1)

where q is the load applied on the central point of the plate, w is the deflection of the thin plate, and Qz is the transversal shearing force in the plate at the central point.

The equations for large deflection of plate27 are given by

$$ {D{\nabla ^4}w = q + {N_x}\frac{{{\partial ^2}w}}{{\partial {x^2}}} + {N_y}\frac{{{\partial ^2}w}}{{\partial {y^2}}} + {N_{xy}}\frac{{{\partial ^2}w}}{{\partial x\partial y}},} \\ {\frac{1}{E}{\nabla ^4} = \left[ {{{\left( {\frac{{{\partial ^2}w}}{{\partial x\partial y}}} \right)}^2} - \tfrac{{{\partial ^2}w}}{{\partial {x^2}}}\tfrac{{{\partial ^2}w}}{{\partial {y^2}}}} \right],} \\ $$
((A2))

where D is the flexural rigidity of the plate as defined in the main text, and N and F are the membrane force and stress function respectively. For the configuration of Fig. A1, the governing partial differential equations given above are simplified as follows:

$$D\frac{{{{\text{d}}^4}w}}{{{\text{d}}{y^4}}} = {N_y}\frac{{{{\text{d}}^2}w}}{{{\text{d}}{y^2}}}$$
((A3))
$$\int_0^{\bf{b}} {\left[ {\frac{{{\partial ^2}F}}{{\partial {x^2}}} - v\frac{{{\partial ^2}F}}{{\partial {y^2}}} - \frac{E}{2}{{\left( {\frac{{\partial w}}{{\partial y}}} \right)}^2}} \right]} \,{\text{d}}y = 0$$
((A4))

The general solution of Eq. (A3) is as follows (for the left part of the plate):

$$w = {A_1}sh{\lambda }y + {A_2}ch{\lambda }y + {A_3}y + {A_4}$$
((A5))

where λ2 = hσ0y/D, σ0y is membrane stress in the y direction and defined as σ0y = Ny/h. Substituting the boundary condition [Eq. (A1) ] into Eq. (A5) gives

$$ {{A_1} = \frac{{ - {A_3}}}{{\lambda }} = \frac{q}{{2D{{\lambda}^3}}}} \\ {{A_2} = - {A_4} = {A_1}\frac{{1 - ch\frac{{{\lambda }l}}{2}}}{{sh\frac{{{\lambda}l}}{2}}}} \\ $$
((A6))

Thus, the Eq. (A5) can be rewritten as

$$w = \frac{q}{{2D{{\lambda}^{\text{3}}}}}\left\{ {\frac{{sh{\lambda}\left( {y - \frac{1}{4}} \right) + sh\frac{{{\lambda }l}}{4}}}{{ch\frac{{{\lambda }l}}{4}}} - {\lambda y}} \right\}$$
((A7))

wherein, the value of λ can be obtained by the following equation:

$${\sigma }_{\text{y}}^0 = \frac{E}{{1 - {v^2}}}\frac{1}{{2b}}{\int_0^l {\left( {\frac{{{\text{d}}w}}{{{\text{d}}y}}} \right)} ^2}{\text{d}}y$$
((A8))

Appendix B: Load–Deflection Relationship

The strain energy of the plate is defined as

$$U = \frac{1}{2}{\smallint _v}{\sigma _{ij}}{ \in _{ij}}{\text{d}}V$$
((B1))

For the elastic plate the above equation can be expressed as

$$U = \frac{1}{2}\smallint \smallint \smallint \left( {{{\sigma }_x}{ \in _x} + \,{{\sigma }_y}{ \in _y} + \,\,{{\tau }_{{\text{xy}}}}{{\gamma }_{xy}}} \right){\text{d}}x{\text{d}}y{\text{d}}z = {U_{\text{m}}} + {U_{\text{b}}}\,,$$
((B2))

where Um and Ub are the membrane strain energy and bending strain energy, respectively, defined as27

$$ {{U_{\text{m}}} = } {\frac{h}{{2E}}\smallint \smallint \left\{ {{{\left( {{V^2}F} \right)}^2} - 2\left( {1 + v} \right)\left[ {\frac{{{\partial ^2}F}}{{\partial {x^2}}}\frac{{{\partial ^2}F}}{{{\sigma}{y^2}}}} \right.} \right.} \\ {} {\left. {\left. { - {{\left( {\frac{{{\partial ^2}F}}{{\partial x\partial y}}} \right)}^2}} \right]} \right\}{\text{d}}x{\text{d}}y\,,} \\ $$
((B3))

and

$$ {{U_{\text{m}}} = } {\frac{h}{{2E}}\smallint \smallint {{\left\{ {\left( {{\nabla _2}F} \right)} \right.}^2} - 2\left( {1\,|v} \right)\left[ {\frac{{{\partial ^{\text{2}}}F}}{{\partial {x^2}}}} \right.\frac{{{\partial ^{\text{2}}}F}}{{{\sigma }{y^2}}}} \\ {} {\left. {\left. { - {{\left( {\frac{{{\partial ^{\text{2}}}F}}{{{\text{d}}x{\text{d}}y}}} \right)}^2}} \right]} \right\}{\text{d}}x{\text{d}}y} \\ $$
((B4))

For the following deflection function:

$$w = {\delta }\,{\text{si}}{{\text{n}}^{\text{2}}}\frac{{{\pi y}}}{l}$$
((B5))

the membrane stress σ0y Eq. (A8), membrane strain energy Um Eq. (B3), and bending strain energy Ub Eq. (B4) are expressed as

$${\sigma }_{\text{y}}^0 = \frac{{{{\pi }2}E{{\delta }^{\text{2}}}}}{{4\left( {1 - {v^2}} \right){l^2}}}$$
((B6))
$${U_{\text{m}}} = b{U_{{\text{my}}}} = b\frac{{{{\pi }^4}hE{{\delta }^4}}}{{32\left( {1 - {v^2}} \right){l^3}}}$$
((B7))

and

$${U_{\text{b}}} = b{U_{{\text{sc}}}} = b\frac{{{{\pi }^4}{\text{D}}{{\delta }^2}}}{{{l^3}}}$$
((B8))

The maximum stress in the bending plate, which is located at the point y = 0 and z = −h/2, is expressed as Eq. (B9):

$${\left( {{{\sigma }_y}} \right)_{\max }} = {\sigma }_{\text{y}}^{\text{o}} + \frac{{{{\pi }^2}Eh{{\delta }^{}}}}{{\left( {1 - {v^2}} \right){l^2}}}$$
((B9))

Energy minimization method is used to derivate the deflection δ at the center, which is

$$\frac{{\partial I}}{{\partial f}} = 0$$
((B10))

where I = Umy + Uby − Λ, Λ = w0q. The following equation then gives:

$$12.18{\left( {\frac{{\delta }}{h}} \right)^3} + 16.23\left( {\frac{{\delta }}{h}} \right) = \frac{{1 - {v^2}}}{{Eh}}{\left( {\frac{l}{h}} \right)^3}q$$
((B11))

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Du, J., Liu, B. et al. Quantitative evaluation of adhesion of metallic coatings with an extended microbridge test. Journal of Materials Research 22, 2497–2504 (2007). https://doi.org/10.1557/jmr.2007.0309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0309

Navigation